# Outline

- Motivation
- TX/RX Block Diagrams
- Multi-phase VCO
- f<sub>τ</sub>-doubler Designs (Amp, Mux)
- Measured Performance
- Package
- Die Photos and Summary



•

### **Communication Trends**



### **Transmitter Block Diagram**



### **Receiver Block Diagram**





## VCO Block Diagram







### VCO Layout Issues





#### Simple linear layout

- achieves 7ps peak error between phases (simulated)
- limited by interconnect resistance mismatch

#### Quad symmetric layout

- achieves 1ps peak error (simulated)
- interconnect resistances and capacitances are matched



# f<sub>r</sub>-doubler Advantages

Provides lower input capacitance

• less loading on previous stage

#### Provides better output waveform symmetry

• less pattern dependence and jitter



#### Diff-pair versus f<sub>r</sub>-doubler







Parasitic current source and device capacitance is 1/2 diff-pair value giving a more symmetric output





#### 3-Stage f<sub>1</sub>-doubler Amplifier





### 3-Stage f<sub>r</sub>-doubler Amplifier (simulated)



Input torture test:

• 2<sup>7</sup>-1 PRBS signal with randomly varying pulse amplitudes, stresses both AM and phase margins

Output of amplifer:

- Driving 8 latches at 10Gb/s
- Simulation includes package, bond wires and ESD protection
- 3 ps jitter due to package
- 10ps (p-p) from amplifier





### Traditional non-retimed 4:1 Multiplexer

Simple 4:1 Mux

Using Two Muxes for Symmetry





### f<sub>r</sub>-doubler 4:1 Multiplexer





### Eye Diagrams



20 ps/div

Eye at package Pin

- 3ps (RMS) / 18ps (p-p)
- systematic jitter
  < 3ps (peak)</li>

Eye after 21' of 0.19" coax

• BER < 10<sup>-14</sup>





## Packaging

- Custom 100-Pin Package
- Kovar Baseplate
- Ceramic Sidewall
- "Fine-line" alumina hybrid
- S<sub>11</sub> better than 20dB to 5GHz, 15dB to 8GHz





### **TX** Summary

- Die size: 2.6x4.4mm<sup>2</sup>
- Power: 3.0W
- Supply: -5.2V
- ECL-style design in 25GHz f<sub>T</sub> Si-Bipolar Process
- Output swing: 800mV p-p (doubly terminated)
- Output rise/fall: <40ps (20/80%) (package limited)





## **RX** Summary

- Die size: 3.9x4.4mm<sup>2</sup>
- Power: 5.0W
- Supply: -5.2V
- ECL-style design in 25GHz f<sub>T</sub> Si-Bipolar Process
- Input sensitivity:10mV (BER < 10<sup>-14</sup>)



# Conclusion

- Using Multi-phase sampling techniques, 10 Gb/s transmission is achieved with 25 GHz f<sub>T</sub> Silicon Bipolar process.
- Good BER performance is achieved across 21 feet of Gore 0.19" coaxial cable.
- Chipset provides low-cost alternative to fiber-optic links for short connections in computer, router and instrument backplanes.

