
Czohralski Proess Development and Control with DSIMRihard Walker∗AbstratThis paper presents a simple timestep-based simulator (DSIM) providing the ore funtionality of Labview in less than 700 linesof C. Linear and non-linear analog elements suh as integrators, di�erentiators, gain elements, omparators, PID ontrollersand so forth are typially implemented in less than a dozen lines of C-ode. A Czohralski rystal growth is simulated using asimple rystal growth model and simulated furnae thermal response. A simple Reipe subroutine is alled at every simulationpoint to update rystal Diameter and Average Pull Rate based on table lookup. After the simulation algorithm is re�ned usinga syntheti model, it is antiipated that eah software stub be replaed by an equivalent all to atual hardware. This an bedone in stages. For example, the Temperature ontrol loop an be run on a real furnae with the IR temp sense data being fedto a syntheti software rystal growth model. Beause the ore simulator is stripped of all the unneessary graphi overheadof Labview, the resulting system is easily modi�ed, fully transparent in operation, and apable of ultra-high reliability.1 IntrodutionSimulating a omplex system an easily turn into a tangled mess of omputer ode. However, the simple algorithmdesribed here is apable of handling all the ommuniation between multiple system omponents in a strutured,guaranteed stable way. The algorithm (alled DSIM) and was invented and �rst desribed as a simulator for non-linear bang-bang phased-lok-loop iruits1. The methodology for simulation and ontrol used in DSIM will be quitefamiliar to users aquainted with other systems suh as Labview and SPICE. A simple DSIM implementation of aCzohralski rystal growth only requires 700 lines of C, inluding the simulator itself and all required models!To setup a DSIM simulation, a funtional blok diagram of the system must be reated. Eah of the wires or signalsinteronneting eah blok is given a unique name and number. The funtionality of eah blok is aptured in aC-subroutine. Eah subroutine will be alled at every time step. The parameters to the subroutines will be the nodenumber of the interonneting signals for that node. The number of eah node indexes into a data struture whihallows the blok to aess the proess value for that signal for the previous and urrent time step. In addition, afuture value is expeted to be updated for eah blok whih has an output signal. The ore algorithm handles allthe ommuniation between funtional bloks, timestep ontrol and data I/O.The next setion desribes the ore algorithm in detail and gives examples of a number of di�erent funtional bloks.
∗Rihard Walker, Consulting. <walker�omnisterra.om>1 Rihard Walker, �Clok and Data Reovery for Serial Data Communiations�, pp 62-65, BCTM tutorial, September 27, 1988.(http://www.omnisterra.om/walker/pdfs.talks/btm2.maker.pdf).

1

2 Simulation Algorithm 2

2 Simulation AlgorithmThe ore of the simulator is a set of three �oating point arrays, indexed by node numbers. The three arrays ontainthe urrent, past and alulated future value of every state variable used by the simulation. The ode below alloatesone master table of size 3*NUMNODES and then indexes into the table by three base pointers alled �old�, �node�,and �new�. The reason for using pointers will be obvious later as the algorithm is desribed.double nodetab le [3∗NUMNODES ℄ ;double ∗old , ∗node , ∗new ;main () {. . .f o r (i =0; i <3∗NUMNODES; i++) {nodold = nodetab le ;}o ld = nodetab le ;node = nodetab le+NUMNODES;new = nodetab le+2∗NUMNODES;. . .The behavior of every element in the simulation must be de�ned by C-ode subroutine. Eah element will be alled ateah timestep and has ertain responsibilities. The element will be alled with an argument list of the node numbersto whih it is onneted. The element will use these numbers to index into the three arrays to ompute a new outputvalue. Consider a simple ampli�er that ould be desribed by the following prototype:void amp l i f i e r (input , output , gain , r e f)i n t input , output ;double gain , r e f ;. . .The amplifer an aess the urrent input voltage (or proess variable) by �node[input℄�, the value of the proessvariable at the previous timestep by �old[input℄�, and an set its output by writing to �new[output℄�. Here is the odefor the body of the ampli�ernew [out ℄ = (gain ∗ (node [in ℄ − r e f e r e n e)) + r e f e r e n e ;Beause the two previous timestep values are always available for every node, it is possible to implement a disretetime version of any seond order system. For example, here is the ode for an integrator using trapezoidal integration:void i n t e g r a t e (in , out , gain)i n t in , out ; double gain ;{ double hunk ; /∗ new in t e g r a t ed por t i on o f s i g n a l ∗/hunk = ((gain /2 . 0) ∗ (o ld [in ℄ + node [in ℄) ∗ s t e p s i z e) ;new [out ℄ = node [out ℄ + hunk ;}The integration is performed by taking the previous value of the input voltage �old[in℄�, adding it to the urrent valueof the input voltage �node[in℄�, dividing by two and then adding it to the urrent output voltage �node[out℄�. Thenew value is then used to update the value of the output node for the next (future) timestep �new[out℄�.Eah element is alled in any order at eah time step. The network topology is restrited to have one and only oneelement driving eah node. Many elements may share the same input node. All the elements an be thought of ashaving in�nite input impedane and zero output impedane.

3 Crystal Growth Example 3

The ore ontrol algorithm for the simulator is simple. It simply alls update repeatedly to allow eah blok toupdate the new[℄ array based on the values of the old[℄ and urrent node[℄ array values. Then it simply shifts thepointers so that the urrent node[℄ array beomes the old array, and the newly written new[℄ values beome theurrent node[℄ values. Beause the global arrays were de�ned with node pointers, there is no atual opying thatours. The pointers are simply shu�ed:f o r (simtime=STARTTIME; simtime<=STOPTIME; simtime=simtime+dt) {update () ; /∗ update nodes eah t s t ep ∗/i f (simtime−SAVETIME >= saves t ep∗ points_plotted) {output () ;po ints_plotted++;}/∗ swap po i n t e r s to avoid opying data ar rays ∗/temp = old ;o ld = node ;node = new ;new = temp ;}The output() routine an be alled at full or deimated resolution to write a log �le that an then be plotted with agraphing tool suh as pdplot2.3 Crystal Growth ExampleA blok diagram for the Adema rystal growth system is shown in Figure 1.A system de�nition �le for this blok diagram is shown below:#de f i n e DD 1 // Diameter Target#de f i n e D 2 // a tua l Diameter#de f i n e PP 3 // APR ta rg e t#de f i n e P 4 // a tua l APR#de f i n e TSET 5 // TEMP ta rg e t#de f i n e T 6 // a tua l TEMP#de f i n e LEN 7 // length#de f i n e KVA 8 // KVA#de f i n e APR 9 // APR#de f i n e DAVG 10 // average diametervoid update () /∗ r e s p on s i b l e f o r updating node [℄ ∗/ {r e i p e (LEN, DD, PP) ;model (P, LEN, T, D) ; /∗ a l u l a t e d , g iven p , l , t ∗/dia (D, DAVG) ; /∗ f i l t e r diameter data ∗/pid (DD, DAVG, P, &pid1) ; /∗ s e tpo in t , urrent , d r i ve ∗/i n t e g r a t o r (P, LEN, 1 . 0 / 3 6 0 0 . 0) ; /∗ onvert APR to length ∗/apr (P,APR, 3 0 0 . 0) ;tps (APR, PP, TSET) ;pid (TSET, T, KVA, &pid2) ; /∗ s e tpo in t , urrent , d r i ve ∗/therm (KVA, T) ; /∗ thermal time onstant ∗/}The order of the bloks is arbitrary. The simulation/ontrol algorithm manages all the interonneting signals. Eahnode must be driven by exatly one blok. We will now go through and desribe eah blok.2 www.omnisterra.om/linux/pdplot

3CrystalGrowthExample
4Fig. 1: Adema Czohralski Growth Algorithm (body mode)

3 Crystal Growth Example 5

3.1 Reipe moduleThe reipe module is responsible for hanging system target values as the proess proeeds. Primarily it will use theurrent rystal length (LEN) as the index into the reipe table. For this simple simulation of body growth, the reipesimply takes the length from the rystal growth model (alled L in the �gure, but LEN in the ode), and outputs atarget diameter DD and a target pull-rate PP.void r e i p e (i n t l , i n t diameter , i n t pu l l) {/∗ l a t e r on , the s e w i l l be f un t i on s o f l ∗//∗ f o r now , j u s t s e t t a r g e t diameter and pu l l r a t e ∗/new [diameter ℄ = 1 5 . 0 ; /∗ 15m ∗/new [pu l l ℄ = 7 . 0 ; /∗ m/hour ∗/}3.2 Crystal Growth moduleThe rystal growth module is used to simulate how the rystal diameter varies with temperature and pull rate. Thissimple model is ad-ho and was not based on deep theory. For simulation auray, this is the most ritial setion ofode. The model gets three piees of information passed to it. They are the urrent pull rate: P, the urrent rystallength: LEN, and the urrent melt temperature: T. It is then responsible for updating the urrent diameter: D.The strategy is to ompare the melt temperature with the freezing point of Silion (1400C), and a maximum tem-perature at whih it is assumed that the rystal will simply no longer ondense (1800C). Bounds are also put onthe minimum and maximum pull rate. It is assumed that a pull rate higher than the maximum will ause therystal diameter to shrink to zero. We then ompute a temperature index �a� whih varies between 0 and 1 as thetemperature varies from freezing to melting. We also ompute a pull rate fator �b� whih varies from 0 to 1 as pullrate varies from min to max. The new diameter is then set to a weighted value between DMIN and DMAX basedon sqrt(a*b).This simple model is su�ient to demonstrate the simulation framework. It however does not onsider the timedependene on rystal growth rate or the 2nd order heatsinking e�et of length on the ritial temperature.void model (p , l , t , d) /∗ a l u l a t e d , based on p , l , t ∗/i n t p ; /∗ pu l l r a t e ∗/i n t l ; /∗ l ength ∗/i n t t ; /∗ temperature ∗/i n t d ; /∗ diameter ∗/{ /∗ l ength dependane i s 2nd order , i gnore f o r now ∗//∗ a l so , l eave out any time dependane f o r D ∗/double TC = 1400 . 0 ; /∗ r i t i a l melt temp ∗/double TM = 1800 . 0 ; /∗ maximum ondensing temp ∗/double PMIN = 0 . 0 ;double PMAX = 14 . 0 ;double DMIN = 0 . 0 ;double DMAX = 30 . 0 ;double x ;double a , b ;i f (node [t ℄ < TC) { /∗ below f r e e z i n g ? ∗/a=0;} e l s e i f (node [t ℄ > TM) { /∗ beyond ondensing ? ∗/a=1;} e l s e {

3 Crystal Growth Example 6

a=(node [t ℄−TC)/(TM−TC) ;}i f (node [p ℄ < PMIN) { /∗ below min pu l l r a t e ? ∗/b=0;} e l s e i f (node [p ℄ > PMAX) {b=1;} e l s e {b=(node [p℄−PMIN)/(PMAX−PMIN) ;}new [d ℄ = sq r t (a∗b)∗ (DMAX−DMIN) + DMIN;}3.3 Diameter �lter moduleIn the legay Adema 8085 multibus ontroller, there is a large noise fator on the diameter reading. This module isresponsible for doing a moving average on the diameter data to redue the noise. In addition, it is possible to usevarious non-linear digital �ltering tehniques suh as median �ltering here. For this simulation, we just pass the datathrough without modi�ation.void d ia (i n t d , i n t davg) { /∗ f i l t e r diameter r ead ings ∗/new [davg ℄ = node [d ℄ ; /∗ f o r now , j u s t pass through ∗/}3.4 PID moduleThere are two traditional Proportional/Integral/Di�erential (PID) ontrollers in the algorithm. These are imple-mented with the same subroutine alled with di�erent PID parameter strutures at run time. The parameters areset in an SPid struturetypede f s t r u t {double ds ta t e ; /∗ l a s t po s i t i on input ∗/double i s t a t e ; /∗ i n t e g r a t o r s t a t e ∗/double imax , imin ; /∗ max, min i n t e g r a t o r s t a t e ∗/double pgain ; /∗ p ropo r t i ona l gain ∗/double i g a i n ; /∗ i n t e g r a l gain ∗/double dgain ; /∗ d e r i v a t i v e gain ∗/} SPid ;SPid pid1 ; /∗ r e a t e pid on t r o l s t r u tu r e s ∗/SPid pid2 ; /∗ r e a t e pid on t r o l s t r u tu r e s ∗/PID ontrol algorithm implementation vary widely. The spei� implementation hosen here is one that inludesanti-windup on the integral ontroller, and omputes the di�erential term on the proess variable instead of the statevariable. This strategy redues extreme proess glithes when there is a step hange in ommand input.void pid (i n t ommand , i n t pos i t i on , i n t dr ive , SPid ∗pid) {double pterm ;double iterm ;double dterm ;double e r r o r ;

3 Crystal Growth Example 7

e r r o r = node [ommand℄−node [po s i t i on ℄ ;pterm = pid−>pgain ∗ e r r o r ; /∗ p ropo r t i ona l ∗/pid−>i s t a t e += er r o r ; /∗ i n t e g r a l ∗/i f (pid−>i s t a t e > pid−>imax) { /∗ ant i wind−up ∗/pid−>i s t a t e = pid−>imax ;} e l s e i f (pid−>i s t a t e < pid−>imin) {pid−>i s t a t e = pid−>imin ;}iterm = pid−>iga i n ∗ pid−>i s t a t e ;dterm = pid−>dgain ∗ (node [po s i t i on ℄ − pid−>dsta t e) ;pid−>dsta t e = node [po s i t i on ℄ ;new [dr ive ℄ = (pterm + iterm −dterm) ;}At startup, PID1 is initialized to integral windup limits of +/- 100.0 and PID parameters of 0.4, 0.3 and 0.0. PID2is initialized to the same windup limits and PID parameters of 3.0, 3.0 and 100.0;3.5 integrator moduleThe integrator module is responsible for onverting the pull rate into length. It is simply a generi trapezoidalintegration funtion with a gain oe�ient:void i n t e g r a t o r (in , out , gain)i n t in ;i n t out ;double gain ;{ double hunk ; /∗ new in t e g r a t ed por t i on o f s i g n a l ∗/hunk = ((gain /2 . 0) ∗ (o ld [in ℄ + node [in ℄) ∗ dt) ;new [out ℄ = node [out ℄ + hunk ;}3.6 APR moduleThe APR module simply takes snapshots of the pull rate at a �xed interval. By keeping APR �xed for, in this ase,300 seonds or 5 minutes at a time, any instability due to APR updating is eliminated. The legay ontroller had amore omplex algorithm due to a high error rate in the multibus ADC iruit, but it is not expeted that the legayalgorithm will be needed in a new ontrol loop with good data integrity.void apr (i n t p , i n t avgpr , double de l ta t ime) {/∗ ompute average pu l l r a t e ∗/s t a t i double nextupdate =0.0;s t a t i double hold ;i f (simtime >= nextupdate) {nextupdate+=de l ta t ime ;hold = node [p ℄ ; /∗ take a snapshot ∗/} new [avgpr ℄ = hold ;}

4 Results 8

3.7 TPS moduleThe funtion of the TPS module is to reate a ontrol input for the kva loop when given a pull rate P, and target pullrate PP. If the urrent pull rate is low, then the KVA set point will be lowered to produe faster rystalization. Ifthe pull rate is too high, and risking rystal defets, the KVA will be raised to redue the rate of rystal aggregation.TPS is non-ritial over a range of values. It is important that it rapidly onverge without osillation. For thesereasons, the TPS algorithm was hosen to be �rst order bang-bang loop ontroller. This type of ontroller rapidlyonverges with very small overshoot and is extremely aggressive about maintaining lok. This implementation doesnot inlude a deadband, but this might be useful in the atual proess ontroller.void tps (i n t p , i n t pp , i n t t t) {double d e l t a ;i f (node [pp ℄ > node [p ℄) {d e l t a = −0.03∗dt ;} e l s e {d e l t a = 0.03∗ dt ;}new [t t ℄ = node [t t ℄+ de l t a ;}3.8 Thermal moduleThe thermal module is responsible for modelling the furnae temperature given KVA input over time. The odeinludes several measured onstants. The �rst set of onstants is the maximum allowed KVA (PMAX) and the steadystate temperature (TMAX) that would result from maximum input. The seond onstant is the average hill watertemperature whih tells the module what the furnae will onverge to when no power is applied. Then there is a timeonstant express in reiprial units of the simulation timestep. From this a simple disrete di�erential equation givesthe furnae temperature as a funtion of time and KVA assuming a sinle order time onstant response funtion.void therm (p , t) /∗ thermal l ag o f furnae g iven kva ∗/i n t p ; /∗ power in kva ∗/i n t t ; /∗ furnae temperature node ∗/{ double PMAX = 150 . 0 ; /∗ max furnae KVA ∗/double TMAX = 1800 . 0 ; /∗ steady s t a t e T at PMAX ∗double TCHILL = 20 . 0 ; /∗ temp o f oo lant water ∗/double E = . 0 0 1 ; /∗ 1/time onstant ∗/double power ;i f (node [p ℄ > PMAX) {power = PMAX;} e l s e {power = node [p ℄ ;}new [t ℄ = ((E∗dt)∗ ((TMAX−TCHILL)∗ (power/PMAX) + TCHILL)) ;new [t ℄ += (1.0−(E∗dt))∗ node [t ℄ ;}4 ResultsRunning the simulator involves ompiling and linking two �les whih ontain a total of 294 lines of C. The entirebuild proess and simulation time for a 2-hour virtual rystal growth is 0.8 seonds of omputer time. The quik

5 Conlusions 9

speed to simulate an entire rystal growth proess enables rapid proess development and allows the system designerto easily gain insight into the proess parameters by quikly running many �what-if� senarios.The simulations show the atual temperature approahing the target temperature with a �rst order time onstant.Only when the temperature is within the orret proess range does the diameter inrease towards the target diameter.The time quantization of the APR module is learly seen. The total length grows monotonially as the APR isintegrated, and eventually trends towards a onstant growth rate and diameter.5 ConlusionsThe DSIM algorithm is a simple and e�ient method for managing the omplexity of a omplex non-linear ontrolsystem of multiple interating bloks. It operates on an easily understood blok diagram model and a set of labelledproess variables that are the shared signals among the funtional bloks. Although this report has desribed thealgorithm in terms of a simulator, it should be evident that the same struture serves as a ontrol algorithm just aswell.To onvert the simulator into a ontroller, the algorithm simply sends any omputed values from internal omputationbloks suh as PID to the atual proess systems. It is proposed in another doument that the ontrol system usedshould be an RS-485 network to allow the proess omputer to diretly send and reeive pakets for reading andwriting every system hardware omponent. Any required input to the ontrol algorithm is similiarly read fromthe appropriate hardware unit. For example, this simple ontrol algorithm would require a amera module to readDiameter, an IR temperature sensor to read melt temperature, and a length enoder to ompute Length and PullRate. The RS-485 network would have ommands for setting pull rate, rotation rate, and KVA.A more omplex reipe routine will be required whih is apable of interpolating the information urrently loadedin by a Datakey as a funtion of time and length. In addition, the simple blok diagram will need to be slightlymodi�ed to support seed, nek, shoulder, body and tail-o� modes. It is also a simple matter to reate operationalmodes that are partially manual in whih ertain of the feedbak systems (eg: TPS) are turned o� and only ertainsystems enabled (eg: KVA or Temperature ontrol).The DSIM algorithm is robust and simple, while providing the essential ore funtionality of more omplex, pro-prietary graphial systems suh as Labview. Beause DSIM does not ome with a mult-megabyte graphial inputfront-end, the overall reliability of the system is greater than that of a more omplex pakage. Beause the number offuntional bloks required for furnae ontrol is small, the large library of a ommerial system is not advantageous,while the operation of the hand-oded DSIM bloks are easily modi�ed and deeply understood.For reliability, it is reommended that the ontrol system be arhiteted as two independent programs: a simple DSIMontrol ore running with a very small, reliable set of ontrol ode and a seond graphial front end that provides theuser interfae to the ore ontroller. Linux provides numerous interproess ommuniation primitives to implementthis arhiteture e�iently. The ore ontroller would then provide a textual ommand interfae somewhat like aMySQL server. A developer an debug the ore by hanging proess parameters on the �y by typing ommandsto the ontroller. In a running prodution system, the ontroller is sent ommands by the GUI front end. Theadvantage of the textual ontrol link is that all proess variable updates an be logged to a �le for debugging thesystem operation.Beause the entral DSIM ontroller is separate, it will be able to maintain proess stability if the more omplexGUI system rashes. A well-designed system will tolerate a rash and quik restart of the GUI bakend without anydetrimental e�et on the proess operation. In addition, the modular arhiteture allows easily hanging the GUIwithout a�eting the ontrol algorithm itself.The omplete soure ode to the DSIM ore along with all the ADEMA-spei� library modules is available fromthe author. It is written in ANSI C and ompiles under the Gnu C ompiler on a Fedora 10 Linux system.

5Conlusions
10Fig. 2: Adema Czohralski Growth Algorithm (body mode)

