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Outline

• Overview of serial data communications

• Degradation mechanisms, data coding

• Jitter measurements

• Clock recovery methods

• Linear PLL review and components

• BB PLL theory
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Diversity of CDR applications
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• Clock and Data Recovery applications span the range
from high-volume, low-cost datacom applications to
high-performance, long-haul telecom applications

• Many different trade-offs tailor each circuit to the target



CDR data rates over time
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Historical CDR limit

~PCB skinloss limit

(0.05-0.4 fT)

number of CDR retiming phases givien in “()”
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Serial data transmission sends binary bits of
information as a series of optical or electrical pulses:

0111011000111110011010010000101011101100011111..

The transmission channel (coax, radio, fiber) generally
distorts the signal in various ways:

From this signal we must recover both clock and data

Basic Idea
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Some Signal Degradation Mechanisms

• AC coupling droop, baseline wander

• Optical pulse dispersion

• Skin / dielectric loss [YFW82, WWS92, FMW97]

• Random noise

• E+O crosstalk

• Intersymbol interference

• Connector discontinuities
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Coding for Desirable Properties

• DC balance, low disparity

• Bounded run length

• High Coding Efficiency

• Spectral Shaping (eg: reduce BW or DC component)

• Many Variations are Possible!

• Manchester [San82]

• mB/nB [Gri69][Rou76][WiF83] [YKI84] [Pet88]

• Scrambling: SONET, 64b/66b [CCI90]

• CIMT [WHY91], Conservative Code [Ofe89]
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Bit Error Rate (BER) Testing

• Pseudo-Random-Bit-Sequence (PRBS) is used to
simulate random data for transmission across the link

• PRBS pattern 2N-1 Bits long contains all N-bit patterns

• Number of errored-bits divided by total bits = BER.

• Typical links are designed for BERs better than 10-12

PRBS
data

generator
TX RX

synth

link

PRBS
data

receiver

clock in clock in
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    Eye diagram construction

random
data TX RX

synth trigger

link

scope

X X

Y

Y

symbol cell (UI)

amplitude
distribution at Y-Y

jitter

Use a precise clock to chop the data

overlay each period onto one plot

into equal periods
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-3T -2T -T 0 T 2T 3T 4T

-3T -2T -T 0 T 2T 3T 4T

unit
interval

Impulses spaced equally in time (jitter free signal)

Impulses spaced irregularly in time (jittered signal)

Errors treated as discrete samples of continuous time jitter

time

11After Trischitta and Varma: “Jitter in Digital Transmission Systems”

Definition of Jitter



Jitter Measurements
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Jitter Measurements

• Datacom Style: Ethernet + Fiber Channel
based on time-domain eye diagrams

• Deterministic Jitter

• Random Jitter

• Telecom Style: SONET
based on frequency-domain jitter spectrums

• Jitter Tolerance

• Jitter Transfer

• Jitter Generation
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Deterministic and Random Jitter

• Random Jitter (RJ)

• data source is simple repetitive “clock-like” pattern.

• RMS jitter is measured at zero crossings of eye-diagram

• measured jitter is mostly due to clock noise

• Deterministic Jitter (DJ)

• data source is complex scrambled data

• pk/pk jitter is measured at zero crossings of eye-diagram

• RJ contribution is subtracted from the measurement

• measured jitter is mostly due to bandwidth limitations in the
data path.

14



Jitter Tolerance Test Setup

sine wave
generator

retiming
circuit

bit error
rate tester

decision
circuit

xamp +
limiter

data
generator

FM
modulated

clock

laser
transmitter

optical
receiver

optical
attenuator

At each frequency, the sinewave
modulation amplitude is increased until
the BER penalty is equal to that
caused by 1dB optical attentuation

After Trischitta and Varma: “Jitter in Digital Transmission Systems” 15



SONET Jitter Tolerance Mask

        Data Rate f0[Hz] f1[Hz] f 2 [Hz] f 3 [kHz] f t [kHz]

OC-3 155 Mb 10 30 300 6.5 65

OC-12 622 Mb 10 30 300 25 250

OC-48 2.488 Gb 10 600 6000 100 1000

OC-192 10 Gb 10 2400 24000 400 4000

f0 f1 f2 f3 ft

15 UI

1.5 UI

0.15 UI

This point is
usually the
most difficult
for many designs

Typical measurement data

from SONET SPEC: TA-NWT-000253 Issue 6, Sept. 1990, fig 5-13 16



Jitter Transfer Measurement

retiming
circuit

decision
circuit

data
generator

network
analyzer

clock

Signal
Generator

IN OUT

ϕ

Phase
detector

Phase
modulatorD.U.T.

[TrV89] [RaO91]

JTF f( ) 20
OutputJitter f( )
InputJitter f( )

------------------------------------------ 
 log=
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Jitter Transfer Specification

fc

P[dB]
slope = -20 dB/decade

acceptable
range

Data Rate fc[kHz] P[dB]

155 Mb 130 0.1

622 Mb 500 0.1

2.488 Gb 2000 0.1

This specification is
intended to control
jitter peaking in long
repeater chains

0dB
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Jitter Generation

clock
circuit

computeroutput
stage

D.U.T.

spectrum
analyzer

generated
clock
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Jitter Generation (cont.)
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1) Measure Jitter Sidebands around Clock

2) Multiply Jitter components by Filter Mask

3) RMS sum total noise voltages over band

4) Convert RMS noise voltage to RMS jitter

Jitterpp rads( ) 2∆Θ= 2
Vsideband

Vclock
--------------------------

 
 
 

atan≅

OC-48 (2.488 Gb/s SONET) specifies 12 kHz hipass filter,
and maximum 0.01 UI RMS integrated jitter.
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Clock Recovery Concepts
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NRZ and RZ signalling
NRZ = “non return to zero” data

RZ = “return to zero” data

+ + +

+ + +

no clock
frequency in
spectrum

clock frequency
appears in
spectrum

clock frequency

T
NRZ signalling is almost universally used. 22



Spectrum of NRZ data

variations due to DC balance strategy

1 T⁄ 2 T⁄f 0=

po
w

er
 in

 d
B

2πfT( )sin
2π fT

-------------------------

missing clock
frequency

Fc+δFc-δ
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Filter Method Examples

d dt⁄ X
2 bandpass

filter

bandpass
filter

delay

N
R

Z
 D
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a 

In
pu

t

R
ec

ov
er

ed
 C
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ck
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ut

pu
t

e.g.: SAW filter

LC tank

non-linear element

(this last circuit can be thought of as an NRZ-RZ converter)

[Yam80][YTY80]
[RFC84][Ros84]

[FHH84][AFK87]
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Summary of Filter Method

Retimed DataJittered NRZ Data Signal

d dt⁄ X
2 bandpass

filter/limiter

D Q

Con:

Temperature and frequency variation
of filter group delay makes sampling
time difficult to control

Narrow pulses imply high fT

Hi-Q filter difficult to integrate

Pro:

Very simple to implement

Can be built with
microwave “tinkertoys”
using coax to very high
frequencies

τ
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Q-Factor in resonant circuits
Voltage envelope of ringing circuit falls to 1/sqrt(e) in Q
radians.

1.0 1.0/sqrt(e)

Q/2*PI cycles

Fcenter

Q also equals the center
frequency of a filter divided by
the full-width of the resonance
measured at the half power
points:  Fcenter/

am
pl

itu
de

High-Q filter can be emulated by PLL with low loop B.W.
26



Phase
Detector

Low-pass
Loop Filter

Voltage
Controlled
Oscillator

D
Retimed

Data
Jittered

Data Signal

PLL

Q
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Data recovery with simple PLL

Everything in the simple PLL is easily integrable. The remaining problem is to
match the recovered clock phase to the middle of the data eye. This can be
difficult to achieve over all process variation at very high datarate/ft ratios.



x t( ) A ωcos ct=

x t( ) A ωct φ t( )+[ ]cos=

Perfect Clock:

Jittered Clock:

Practically,  is only measured at zero crossings, but is
treated as a continuous time signal.

φ t( )

x t( ) φ t( )=

Jitter Signal:

plot of the zero crossing
arrival time phase error

After Behzad Razavi: “Monolithic Phase-Locked Loops, ISSCC96 Tutorial” 28

Analytic Treatment of Jitter



Phase
Detector

Loop
Filter VCO

Kφ
1
s
---Kv

1 βsτ+( )
1 sτ+( )

-----------------------

Warning: Extra integration in VCO complicates the design!

29See Floyd M. Gardner, “Phaselock Techniques”, John Wiley and Sons, for good introduction to PLL theory

Model of linear phase-locked loop
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Kv
s

------Kφ
1 βsτ+( )
1 sτ+( )

-----------------------a

b

c

c/a c/b

open loop gain

10k 100k 1M 10M 100M 1G 10G1k

0dB

40dB

80dB

-40dB

-80dB

(input jitter)

Linear loop frequency response

 (c/a, with loop broken at “X”)



D Qsimplified
schematic
symbol:

clock

Decision Circuit

• Quantizes amplitude at precise sample instant and
typically uses positive feedback to resolve small input
signals

• A common choice in bipolar processes is a master/slave
D-flip-flop carefully optimized for input sensitivity and clock
phase margin

• To avoid hysteresis in CMOS processes, it is common to
use a sense amp which is reset prior to each data sample

31



Example Bipolar Decision Circuit

data in

clock in

Vbias

data out

-5V

master latch slave latch

gnd

• many clever optimizations are possible

[OhT83][Con84][Lai90][Run91][Hau91]
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VCO alternatives

• [Cor79, Ena87, Wal89, DeV91, Lam93, WKG94]

LC Oscillator Multivibrator Ring Oscillator

Speed Technology Dependent 1-10’s of GHz

Phase Noise Good Poor

Integration Poor

(L, Varactor)

Excellent

Tunability Narrow/Slow Wide/Fast

Stability Good Poor

(needs acquisition aid)

Other Multi-Phase
Clocks

After Todd Weigandt, B. Kim, P.Gray, “Timing Jitter Analysis for High-Frequency CMOS Ring Oscillators”, March 10, 199433



Multivibrator VCO

Itune

Capacitor is alternately charged and
discharged by constant current

Tuned by varying Itune in current source

Diode clamps keep output voltage
constant independent of frequency

Relies on non-linear switching for
oscillation behavior, and so is limited to
moderate frequencies.

Frequency =
I tune

4CVbe
-----------------

After Alan B. Grebene, “Analog Integrated Circuit Design”, Van Nostrand Reinhold, 1972, pp 313-315 34



Example Ring Oscillator VCO

Input 1

Input 2

Output

[SyA86]
[EnA87]
[Wal89]

Input 1

Tune

Input 2

Tune

In
pu

t 1

Input 2

Output

Output
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False or Harmonic Locking to Data

36

data

clock

4/3 clock

2x clock

1/2 clock

correct early late correct

early/late indications
cancel in loop filter,
leaving an attenuated,
but possibly stable lock
signal.



Aided Acquistion

• Tricky task due to Nyquist sampling constraints caused
by stuttering data transitions

• Still subject to false lock if VCO range is too wide

PD loop filter 1

loop filter 2FD

VCO

Input Data

37After Behzad Razavi: “Monolithic Phase-Locked Loops, ISSCC96 Tutorial”



Training Loops

1/256

VCO

State
Machine

PDET

FDET

SEL charge
 pump

Input

Data

Reference Clock flock

dlock

dtrans
LOS

Clock/256

Clock

2.488GHz/256

divider

bang-bang drive

retimed data

An increasingly common technique is to provide a
reference clock to the CDR circuit. This allows the VCO
process-variation to be dynamically trimmed out, avoiding
false locking problems.

[WSY97]
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Phase Detectors

• Phase detectors generate a DC component proportional
to deviation of the sampling point from center of bit-cell

• Phase detectors are:

• Binary quantized phase detectors are also called “Bang-
bang”, or “early-late” phase detectors

0°

90° 180°

90– °180– °

Continuous

Binary Quantized

After [Hor92]. 39



 [Hog85][Shi87]
D QD Q

UP

DOWN

Data

1 = Data.................

2= Clock (Early).....

3 = 1 retimed..........

4 = Clock.................

5 = 3 retimed..........

6 = 1 xor 3 (UP).....

7 = 3xor 5 (DOWN)

Data

Clock

“Self-Correcting Phase Detector”

The “Hogge” detector is typical of linear phase detectors. It operates by creating
pulses whose widths are equal to the phase error of the incoming data. These
pulses may be difficult to produce at high speeds.

40



Early-Late Phase Detector

• NRZ data is sampled at each bit cell and near the
transitions of each bit cell

• Transition sample polarity is compared with preceeding
and following bits to deduce the phase error.

• Output is binary quantized, early-late phase
indications, or ternary quantized if a hold-state is
implemented.

A T B

D Q

D Q

D Q

D Q A

T

B

Data

Clock

latchflipflop

A T B Output
0 0 0 hold
0 0 1 vco fast
0 1 0 ?
0 1 1 vco slow
1 0 0 vco slow
1 0 1 ?
1 1 0 vco fast
1 1 1 hold

[Ale75][WHY91]
[LaW91][ReG73]

41



 BB/charge-pump w/wo hold state
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12
• hold-mode maintains VCO

frequency when transitions
are absent in the data.

• loop w/o hold has peak
jitter run-length times
worse than loop w/hold

loop with hold

w/o hold mode

(simulated with  ξ=100,ptransition = 50%)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000



Loop Filters

UP DOWN

VOUT UP DOWN VOUT

0 0 hold

0 1 ramp DOWN

1 0 ramp UP

1 1 hold

[Den88] [Dev91]
[LaW91] [WuW92]

• should have provision for holding value constant
under long run-length conditions

• may be analog (integrator) or digital (up-down
counter) - but watch out for metastability!

43



Bang-bang PLL Theory

44



Why bother with a BB loop?
• it may be difficult to maintain optimum sampling point

with traditional PD/PLL or with filter method over
process, temperature and supply variation

• Narrow pulses of linear PD’s may not work well at
extremely high bit rates

• for monolithic implementation, BB PD has excellent
match between retiming latch and PD latch - allows
for operation at highest latch toggle frequency

45D Q

D Q

D Q

D Q A

T

B

data

clk

D Q

PD

filter VCO

data
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BB PLLs have the advantage of precise sample point alignment based on layout
symmetry. This makes BB PLLs predominate as designs push data rate towards
the process transit frequency limit. (number of retiming phases shown in ()).



D Q

VCO

• VCO runs at two discrete frequencies: .

• Phase error is evaluated at a discrete time interval
. In general, this can be approximated by the

mean transition time of the data.

• A simple D-flip-flop serves as a bb-phase detector if
locking to a clock rather than to a data signal.

f nom f bb±

tupdate

tupdate

47

Simple First Order BB loop



 Efficient Simulation Strategy

• Simulating the VCO waveform is unnecessary to
accurately model ideal PLL behavior.

• Only frequency and phase is needed.

• Model all circuit time-varying state variables as voltages.

• Convert between frequency and phase variables with
explicit integration block.

48



 Model of First-order Loop

ΣΣ Kvcov td∫

 node: Fin ∆F    ∆θ1 Θerror bbtune Fvco

unit: Hz Hz UI UI V Hz

φmod

fsample

Fin

49

The tricky bit is to define the loop in terms of an input frequency rather than
an input phase by pulling the VCO integral through the input summation.
This allows easy simulation of both frequency and phase steps.



 Lock Range for 1st-order loop
M

H
z

D
eg

re
es

time (µseconds)

 2490.0

 2484.0

    5.0    15.0

    0.0

 -200.0

 200.0

vcofreq

phierr

fin
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Jpp

in lock out of lockout of lock

Fnom f bb+

Fnom

Fnom f bb–

The loop is “locked” whenever the input frequency is bracketed by the two
VCO frequencies. The rapid alternation between frequencies slightly too
high and slightly too low create a hunting jitter (Jpp).



 1st-order loop: locked region
M

H
z

D
eg

re
es

time (µseconds)

 2485.0

 2490.0

    8.0    12.0

    0.0

 -40.0

   40.0

phierr

fin
vcofreq

51

The phase detector duty-cycle is proportional to the average frequency
error.

Fnom f bb+

Fnom

Fnom f bb–



 1st-order loop: slew-rate limiting

M
H

z
D

eg
re

es
D

eg
re

es

time (µseconds)

 2490.0

 2486.0

    0.0

 -200.0

    5.0     8.0

    0.0

 -100.0

fin

vcofreq

dphi1
phimod

phierr

52

Although the average input frequency (fin) lies within the lock range of the
loop, the added sinusoidal jitter (phimod) causes the instantaneous input
frequency to exceed the VCO range. The loop phase (dphi1) stops
toggling and goes into slew rate limiting, leading to a phase error (phierr).



 Summary of 1st-order loop

• Lock range: .

• Jitter (pk/pk in UI): .

• Bang-bang loop tracking is slew-rate limited.    The
effective loop bandwidth is amplitude dependent.

• The maximum amplitude of phase modulation at
frequency  before onset of slew-rate limiting:

.

f nom f bb–( ) f c f nom f bb+( )< <

Jpp 2 t⋅ update= f bb⋅

frequencyou
tp

ut
 ji

tte
r input is 1UI jitter

0.1UI
0.01UI

f mod
AUI f bb f mod⁄=

53



 Summary of 1st-order loop, cont.

• If locked, then the duty cycle , must result in the
average loop frequency being equal to the input
frequency ,

• Phase detector average duty cycle , given by

    (proportional to ).

C

f c
f c f nom ∆f+ C fnom f bb+( ) 1 C–( ) f nom f bb–( )+= =

C
1
2
--- ∆f

2 f⋅ bb( )
---------------------+ 

  ∆f

54



Observations

• Jitter generation, Jitter transfer bandwidth, Jitter
tolerance and frequency lock range are all
inconveniently controlled by one parameter, .

• Phase detector average duty-cycle is proportional to
frequency error.

• Strategy: Use the average duty cycle to control loop
center frequency. This decouples the lock range from
jitter tolerance/generation giving more design freedom.

• If the center frequency control loop is slow enough, the
resulting loop behavior will be very similar to a simple
first order loop, but with extended frequency lock
capability.

f bb

55



2nd-order BB loop

56

D Q

VCO

1
τ
--- v td∫

Integral branch

Proportional (BB) branch

Kvco

β

Σ
Vφ

tupdate
pd output

BB path frequency change

BB path phase change

Integrator path frequency change

Integrator path phase change

Vφ

VφβKv

VφβKvt

VφKvt/τ

VφKvt2/2τ



 Stability Factor ξ

tupdate (phase change from BB path)

(phase change from integral path)

To quantify the relative independence of the two feedback
loops, take ratio of phase change from BB path to the
phase change of the integral path:

ξ
∆θbb
∆θint
-------------≡

βVφKvt

VφKvt
2

2τ( )⁄
----------------------------------

t tupdate=

2βτ
tupdate
------------------= =

57

VφβKvt

VφKvt2/2τ



Kv

 redrawing the 2nd-order loop

ΣΣ v td∫

φmod

fsample

Fin

1
τ
--- v td∫

β

Σ

Σ Kvv td∫

φmod

Fin
Σ

fsample

1
τ
--- v td∫Σ

βKv v td∫

∆F ∆θ1 ∆θ2 ∆θ3

Fint θbb

Vφ
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Noticing that Vφ is proportional to ∆F, the system can be transformed into
an inner first order bb-loop PLL (in blue) surrounded by an outer low-
bandwidth frequency tracking loop (in red).



 2nd-order loop: small step in F

time (µseconds)

 2490.0

 2487.0

    0.0

   40.0

    4.0     7.0

    0.0

   -2.0

    2.0

3 3

1

1

1 1

1

1

1 1

1 1

1 1

Fin

Fint

∆θ1 θbb∆θ3

Vφ

M
H

z
de

gr
ee

s
vo

lts
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A step change in input frequency Fin produces a slow response Fint in the
outer, integral loop. The resulting phase error ∆θ1 is tracked by the inner
bang-bang loop θbb to produce the final sampler phase error ∆θ3. Notice
that, unlike a linear PLL, there is no jitter accumulation at the sampler.



 2nd-order loop: large step in F

time (µseconds)

 2500.0

 2480.0

    0.0

 400.0

    4.0     7.0

    0.0

   -2.0

    2.0

Fin

Fint

θbb

∆θ3

∆θ1

Vφ

M
H

z
de

gr
ee

s
vo

lts
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In this simulation, the input frequency step is bigger than fbb, so the loop
goes into slew rate limiting, leading to a transient phase error ∆θ3 at the
sampler. A fancier loop could detect slew rate limiting by the lack of PD
transitions, and adaptively increase the loop frequency step size.



 2nd-order loop: phase jitter tracking

61

time (µseconds)

    0.0

 -100.0

 100.0

    0.0

 -50.0

   50.0

    4.0     7.0

    0.0

   -2.0

    2.0

1

1

1 1

12 2

2

2

2

23
3

3

2

∆θ1

φmod∆θ2

∆θ3θbb

∆θ2

Vφ

de
gr

ee
s

de
gr

ee
s

vo
lts

Sinusoidal phase jitter φmod is tracked at ∆θ1 with a phase lag by the outer,
integral loop. The resulting phase error ∆θ2 is tracked by the inner bang-bang
loop θbb to produce the final sampler phase error ∆θ3. The PD output Vφ varies
with the slope of ∆θ2 which is proportional to the instantaneous frequency error
of the outer loop.



 2nd-order loop: slope overload

time (µseconds)

    0.0

 -200.0

 200.0

    0.0

 -100.0

   100.0

    4.0     7.0

0.0

   -2.0

    2.0

1

Vφ

∆θ1

φmod∆θ2

∆θ2 ∆θ3

de
gr

ee
s

de
gr

ee
s

vo
lts
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θbb

The phase modulation is increased until the instantaneous frequency
error exceeds the inner loop’s ability to track. Slew-rate limiting at
point “A” in the inner loop θbb produces a tracking error at the
sampler ∆θ3. The loop is designed so that this situation never occurs
under normal jitter tolerance conditions.

A



 redrawing the 2nd-order loop (again)

Σ Kvv td∫

φmod

Fin
Σ

fsample

1
τ
--- v td∫Σ

βKv v td∫Fint θbb
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Σ
Fin

t=0,1,2...

Σ

f bb

∆F ∆θ v td∫
2 f bb

ξ
------------

1st-order ∆Σ

±1v td∫

on ∆F

Transform the loop by pulling the integrators through the summing node “A”.
Normalize update interval to 1. Let βKvVφ = fbb Substitute in definition for
stability factor ξ. Notice that structure in blue box is a 1st order ∆Σ on ∆F.

A

[Gal94,95]



∆Σ linear system analogy for bb-loop

H(z)Σ Σ

Q(z)
X(z) Y(z)

(integration)

Y z( ) H z( )
1 H z( )+
---------------------X z( ) 1

1 H z( )+
---------------------Q z( )+=

ga
in

freq
ga

in
freq

[Hau91b]

[Gal95]
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 solve for slope overload

Σ 1
s
---

Fin
Σ

f bb

∆F ∆θ 2 f bb
ξ

------------
1
s
---

• Slew rate limiting occurs when |∆F| > fbb

• Maximum input phase modulation in UI, normalized

to ∆θbb is .

• Can be used to compute jitter tolerance.

s
2

s
2
ξ
---+ + 

  s
3

s
2

+( )⁄
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 slope overload limit vs ξ
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are from numerical
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 jitter generation in frequency-domain

• ∆Σ approximation justifies replacing BB phase detector
with a noise source.

• Combine total loop phase noise by combining each
phase noise source in RMS fashion.
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Σ β 1
sτ
-----+

Kv
s

------ ΣΣ
source
phase
noise

BB phase noise VCO open loop phase noise

output

of form: Asin(x)/x

H s( )
Kv
s

------= β 1
sτ
-----+ 

 



 example jitter generation calculation
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see [WSY97]: fvco=2.488 GHz, fbb = 6 MHz, ξ=32000, tupdate=400ps.
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 gaussian jitter generation & gain vs ξ
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ξ = 1e-06

ξ = 1e-05

ξ = 1e-04

ξ = 0.001

ξ = 0.01

ξ = 0.1

ξ = 1 Jidle = 0.6+(1.65/ξ)
Jlin = 2*Jin/(1+sqrt(ξ))
Jwalk = 0.7*sqrt(Jin)
Jtot = Jidle + Jlin +Jwalk

ξ = 10
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Simulation is for a non-tristated loop, ptransition = 100%, with 108 timesteps per point. High
stability-factor loops have RMS output jitter equal to the square root of the input jitter!



 BB PLL CDR design flowchart
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Are you using a
run-length
limited code?

Start

you have the option of using
a loop w/o hold mode, set
tupdate = max runlength

yes

no

use a loopfilter and
VCO with hold mode,
set tupdate = tbit

Compute β based on Kvco, Vφ, tupdate,
and the jitter generation spec.   Check
that your chosen β will meet the jitter
tolerance spec. There is a direct tradeoff
between jitter generation and jitter
tolerance.

Set the loop-filter time constant τ such
that the loop stability factor ξ is >> 1 over
all process variation.

            τ = (tupdate * ξ) / (2β)
Typical values of ξ are in the range of
100-10,000, based on hold capacitor
size.

Done



 Summary

A lot of complexity for a “simple” system...

It’s more of an art than a science

After understanding:

• the components,

• the block diagrams,

• the problems and the attempted solutions,

• and the unique needs for your application,

you’ll be well equipped to craft an artful solution.
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