RCW 01/15/97, updated 9/18/98

1) Eye Margin

- how much noise can be added to input while maintaining target BER? (voltage margin)
- How far can clock phase alignment be varied while maintaining target BER? phase margin)
- how does the static phase error vary versus frequency, temperature and process variation?
- Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics

- what is the jitter generation? (VCO phase noise, etc.)
- what is the jitter transfer function? (peaking and bandwidth)
- what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency

- how do long runlengths affect system performance?
- is bandwidth sufficient for individual isolated bit pulses?
- are there other problematic data patterns? (resonances)
- does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time

- what is the initial, power-on lock time?
- what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?

- are external capacitors, inductors needed?
- does the CDR need an external reference frequency?
- are laser-trimming or highly precise IC processes required?

6) Input/output impedance

- Is S11/S22 (input/output impedance) maintained across the frequency band?
- are reflections large enough to lead to eye closure and pattern dependency?
- is >15 dB return loss maintained across the band?

7) Power Supply

- does the CDR create power supply noise?
- how sensitive is the CDR to supply noise?
- Is the VCO self-modulated through its own supply noise? (can be "deadly")
- what is the total static power dissipation?
- what is the die temperature under worse case conditions?

- can false lock occur with particular data patterns?
- are false lock conditions be detected and eliminated?
- does the phase detector have VCO frequency leakage that can cause injection locking?
- can the VCO run faster than the phase/frequency detector can operate? (another "killer")
- have all latchup/deadly embrace conditions been considered and eliminated?

[Ale75]	Alexander, J. D. H., Clock Recovery from Random Binary Signals, <i>Electronics</i> <i>Letters</i> 11, 22 (30th October 1975), 541-542. {binary quantized phase detector}.
[AFD87]	Andrews, G. E., D. C. Farley, S. H. Dravitz, A. W. Schelling, P. C. Davis and L. G. McAfee, A 300Mb/s Clock Recovery and Data Retiming System, <i>ISSCC Digest of Technical Papers</i> , 1987, 188-189. {SAW Filter Clock Recovery with emphasis on phase alignment problem}
[Arm83]	Armitage, C. B., SAW Filter Retiming in the AT&T 432 Mb/s Lightwave Regenerator, <i>Conference Proceedings: AT&T Bell Labs., Holmdel, NJ, USA</i> , September 3-6, 1984, 102-103. {matches tempco of SAW to tempco of electronics.}.
[Baa86]	Baack, C., Optical Wide Band Transmission Systems, <i>CRC Press Inc.</i> , 1986. {example of PLL for clock recovery}.
[Buc92]	Buchwald et al., A., A 6GHz Integrated Phase-Locked Loop using AlGaAs/ GaAs Heterojunction Bipolar Transistors, <i>ISSCC Digest of Technical Papers</i> , 1992, 98,99,253. {Frequency multiplying ring oscillator}.
[Byr63]	Byrne et al., C. J., Systematic Jitter in Chain of Digital Regenerators, <i>The Bell System Technical Journal</i> , November 1963, 2679. {clock extraction by filtering}.
[CCI90]	CCITT, Digital Line systems based on the synchronous digital hierarchy for use on optical fiber cables, <i>CCITT G.958</i> , 1990. {SONET Payload test patterns regenerator scrambling}.
[Car56]	Carter, R. O., Low-Disparity Binary Coding System, <i>Electronics Letters 1</i> , 3 (May, 1956), 67-68. {conditional inversion data encoding disparity}.
[Cho92]	Chona, F. M. R., Draft Standard, SONET inter-office and intra-office line jitter re., <i>T1X1.3</i> , May 11, 1992. {Standards SONET jitter}.
[Con84]	Connor et al., P. O., A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984), 226-227. {GaAs Fet decision circuit example}.
[Cor79]	Cordell et al., R. R., A 50MHz Phase and Frequency Locked Loop, <i>IEEE Jour-</i> <i>nal of Solid State Circuits SC-14</i> , 6 (December 1979), 1003-1009. {quadricorrel- lator phase detector, Tunable LC Oscillator}.
[DR78]	D'Andrea, N. A. and F. Russo, A Binary Quantized Digital Phase Locked Loop: A Graphical Analysis, <i>IEEE Transactions on Communications COM-26</i> , 9 (September 1978), 1355-1364. {Analysis of BB loop}.
[DeV91]	DeVito et al., L., A 52 MHz and 155MHz Clock-Recovery PLL, <i>ISSCC Digest of Technical Papers</i> , February 13-15, 1991, 142, 143, 306. {multivibrator example, Negative resistor chargepump, rotational freq.det.}.
[Den88]	Den Dulk, R. C., Digital Fast Acquisition Method for Phase-Lock Loops, <i>Electronics Letters</i> 24, 17 (18th August 1988), 1079-1080. {2 order of magnitude locking speed-up with fancy slip detector & charge pump}.
[EnA87]	Enam, S. K. and A. A. Abidi, Decision and clock Recovery Circuits for Giga- hertz Optical Fiber Receivers in Silicon NMOS, <i>Journal of Lightwave Technol-</i> <i>ogy LT-5</i> , 3 (March 1987), 367-372. {MOS tunable monolithic ring oscillator example - Some clever circuit ideas for gigabit rates}.
[EnA92]	Enam, S. K. and A. A. Abidi, MOS Decision and Clock Recovery Circuits for Gb/s Optical-Fiber Receivers, <i>ISSCC Digest of Technical Papers</i> , 1992, 96,97,253. {quadratic phase detector} {MOS decision circuit example}.

[FHH84]	Faulkner, D. W., I. Hawker, R. J. Hawkins and A. Stevenson, An Integrated Regenerator for High Speed Optical Fiber Transmission Systems, <i>IEE Confer-</i> <i>ence Proceedings</i> (November 30 - December 1, 1983) 8-13. {uses rectifier/SAW combo}
[FLS63]	Feynman, R., R. B. Leighton and M. Sands, <i>The Feynman Lectures on Physics</i> , Addison-Wesley Publishing Company, 1963. {Short, simple presentation of timestep analysis for planetary motion}.
[FMW97]	Fiedler, A., R. Mactaggart, J. Welch and S. Krishnan, A 1.0625Gbps Transceiver with 2x-Oversampling and Transmit Signal Pre-Emphasis, <i>ISSCC Digest of Technical Papers 40</i> (February 6-8 1997), 238,239,464. {transmit pre-emphasis, skin loss equalizer}.
[Gal94]	Galton, I., Higher-order Delta-Sigma Frequency-to-Digital Conversion, <i>Proceedings of IEEE International Symposium on Circuits and Systems</i> (May 30 - June 2, 1994) 441-444 {Delta-Sigma BB loops phase tracking frequency digitalization PLL}.
[Gal95]	Galton, I., Analog-Input Digital Phase-Locked Loops for Precise Frequency and Phase Demodulation, <i>Transactions on Circuits and Systems-II: Analog and Digi-</i> <i>tal Signal Processing</i> 42, 10 (October 1995), 621-630. {good discussion of delta- sigma analysis of BB PLL's}.
[Gar79]	Gardner, F. M., <i>Phaselock Techniques, Second Edition</i> , John Wiley and Sons, Inc., 1979. {example of using exor-gate to generate clock component from NRZ data}
[Gla85]	Glance, B. S., New Phase-Lock Loop Circuit Providing Very Fast Acquistion Time, <i>IEEE Transactions on Microwave Theory and Techniques MTT-33</i> , 9 (Sep- tember 1985), 747-754. {adds non-linear time constant to speed PLL acquisition by 2 orders of mag.}
[Gri69]	Griffiths, J. M., Binary Code Suitable for Line Transmission, <i>Electronics Letters</i> 5, 4 (February 20, 1969), 79-81, {5b/6b encoding example}.
[GMP78]	Gruber, J., P. Marten, R. Petschacher and P. Russer, Electronic Circuits for High Bit Rate Digital Fiber Optic Communication Systems, <i>IEEE Transactions on</i> <i>Communications COM-26</i> , 7 (July 1978), 1088-1098.
[Gup75]	Gupta, S. C., Phase-Locked Loops, Proceedings of the IEEE 63, 2 (February 1975), 291-306. {Good systematic outline survey of communication-type PLL's}.
[Hau91a]	Hauenschild et al., J., A Silicon Bipolar Decision Circuit Operating up to 15Gb/ s, <i>IEEE Journal of Solid State Circuits 26</i> , No.11 (November 1991), 1734-1736. {Si bipolar decision circuit example}.
[Hau91b]	Hauser, M. W., Principles of Oversampling A/D Conversion, <i>J. Audio Eng. So.</i> <i>Vol 39</i> , 1/2 (Jan/February 1991), 3-26. {excellent tutorial on Delta Sigma AD, Oversampling, noiseshaping}.
[HeS88]	Hein, J. P. and J. W. Scott, z-Domain Model for Discrete-Time PLL's, <i>IEEE Transactions on Circuits and Systems 35</i> , 11 (November 1988), 1393-1400.
[Hog85]	Hogge, Jr., C. R., A Self Correcting Clock Recovery Circuit, <i>IEEE Transactions</i> on <i>Electron Devices ED-32</i> , 12 (December 1985), 2704-2706. {Original Hogge detector, interesting phase detector idea}.

[Hor92]	Hornak, T., Interface Electronics for Fiber Optic Computer Links, <i>Intensive</i> <i>Course on Practical Aspects in Analog IC Design</i> , Lausanne, Switzerland, June 29-July 10, 1992. {Excellent overview of components for serial optical data
[Hu93]	Hu, T. and P. Gray, A Monolithic 480 Mb/s AGC/Decision/Clock Recovery Cir- cuit in 1.2 um CMOS, <i>IEEE Journal of Solid State Circuits</i> 28, 12 (Dec. 1993) 1314-20 {CMOS parallel signal paths multiphase sampling CDR mux }
[Kas85]	Kasper et al., B. L., SAGM Avalanche Photodiode Optical Receiver for 2 Gbit/s and 4 Gbit/s, <i>Electronic Letters 21</i> , 21 (10th October 1985), 982-984. {eye dia- gram}
[KWG94]	Kim, B., T. C. Weigandt and P. R. Gray, PLL/DLL System Noise Analysis for Low Jitter Clock Synthesizer Design, <i>ISCAS proceedings</i> , May 30 - June 2, 1994, 31-34, {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
[Lai90]	Lai, B., Decision Circuit Lowers Transmission Bit Error Rates, <i>Microwaves and RF</i> , July 1990, 118-122. {Si bipolar decision circuit example}.
[LaW91]	Lai, B. and R. C. Walker, A Monolithic 622Mb/s Clock Extraction Data Retim- ing Circuit, <i>ISSCC Digest of Technical Papers 34</i> (February 13-15, 1991), 144.145. {binary quantized phase detector}.
[Lam93]	Lam, V. M. T., Microwave Oscillator Phase Noise Reduction Using Negative Resistance Compensation, <i>Electronics Letters 29</i> , 4 (February 18th, 1993), 379- 340. {Leeson negative resistance phase noise second harmonic IC}
[LiC81]	Lindsey, W. C. and C. M. Chie, A Survey of Digital Phase-Locked Loops, <i>Proceeding of the IEEE 69</i> , 4 (April 1981), 410-431. {Presents a good taxonomy of digital PLLs}
[Mac87]	MacDougall, M. H., <i>Simulating Computer Systems - Techniques and Tools</i> , The MIT Press, Cambridge, Massachusetts, 1987. {description and source code for event driven simulator}
[McG90]	McGaughey, J. T., Convert NRZ format to Biphase, <i>Electronic Design</i> , April 12, 1990. 86 {biphase example}
[OFC84]	O'Connor, P., P. G. Flahive, W. Clemetson, R. L. Panock, S. H. Wemple, S. C. Shunk and D. P. Takahashi, A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984),. {2.4 GHz ED GaAs Mesfet Flip-flop w/input buffer amp}.
[Ofe89]	Ofek, Y., The Conservative Code for Bit Synchronization, <i>IEEE Transactions on Communications</i> , 1989. {conserves transition number uses divider for clock recovery}
[OhT83]	Ohta, N. and T. Takada, High Speed GaAs SCFL Monolithic Integrated Decision Circuit for Gb/s Optical Repeaters, <i>Electronics Letters</i> , September 1983. {GaAs
[Par89]	Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, <i>Electronic Letters 25</i> (January 1989), 83-84. {clock extraction by filtering}.
[Pet88]	Petrovic, R., Low Redundancy Optical Fiber Line Code, <i>Journal of Optical Communication 9</i> , 3 (1988), 108-111. {13B/14B code design}.
[RaO91]	Ransijn, H. and P. O'Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, <i>JSSC 26</i> , 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

[Raz96a]	B. Razavi, ed., <i>Monolithic phase-locked loops and clock recovery circuits: the-</i> <i>ory and design</i> , IEEE Press, 1996. {A volume of selected reprints with bibliogra-
[Raz96b]	phy}. Razavi, B., Monolithic Phase-Locked Loops, <i>ISSCC Tutorial</i> , San Francisco,
[ReG73]	CA, February 7, 1996. {Good overview of non-data-driven PLL theory }. Reddy, C. P. and S. C. Gupta, A Class of All-Digital Phase Locked Loops: Mod- eling and Analysis, <i>IEEE Transactions on industrial Electronics and Control</i> <i>Instrumentation IECI-20</i> 4 (November 1973) 239-251. {discusses of binary-
[D CE8/1]	quantized phase detection }. Posenberg P. L. C. Chamzas and D. A. Fishman Timing Recovery with SAW
[KCI 0+]	Transversal Filters in the Regenerators of Undersea Long-Haul Fiber Transmission Systems, <i>Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {discusses jitter accumulation}.
[Ros84]	Rosenberg et al., R. L., Timing Recovery with SAW Transversal filters in the Regenerators of Undersea Long-haul Fiber Transmission Systems, <i>IEEE Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {clock extraction by SAW}.
[Ros85]	Ross, F. E., An Overview of FDDI: the Fiber Distributed Data Interface, <i>IEEE Journal on Selected Areas in Communications</i> 7, 7 (September 1985), 1046, Table 1, {4b/5b encoding example, example of frame synch characters}.
[RHF90]	Ross, F. E., J. R. Hamstra and R. L. Fink, FDDI - A LAN among MANs, <i>ACM Computer Communications Review</i> , July 1990, 16-31. {4b/5b encoding example}
[Rou76]	Rousseau, M., Block Codes for Optical-Fibre Communication, <i>Electronics Letters 12</i> , 18 (2nd September 1976), 478-479. {mBnB code discussion, run length
[RoM77]	Roza, E. and P. W. Millenaar, An Experimental 560 MBit/s Repeater with Inte- grated Circuits, <i>IEEE Transactions on Communications COM-25</i> , 9 (September 1977) {coax-based, good comparison of PLL, vs filter-type clock extraction}.
[RuG91]	Runge, K. and J. L. Gimlett, 20Gb/s AlGaAs HBT Decision Circuit IC, <i>Electronics Letters</i> 27, 25 (5th December 1991), 2376-2378. {GaAs HBT decision circuit example}.
[Run91]	Runge et al., K., Silicon Bipolar Integrated Circuits for Multi-Gb/s Optical Com- munication Systems, <i>IEEE Journal on Selected Areas in Communications 9</i> , 5 (June 1991), 640. {Si bipolar decision circuit example}.
[San82]	Sandera, L., Improve Datacomm Links by Using Manchester Code, EDN, February 17, 1982, 155-162. {manchester coding example}.
[Shi87]	Shin et al., D., Selfcorrecting Clock Recovery Circuit with Improved Jitter Per- formance, <i>Electronics Letters 23</i> , 3 (29th January 1987), 110-111. {Improved Hogge detector}.
[SyA86]	Syed, K. E. and A. A. Abidi, Gigahertz Voltage Controlled Oscillator, <i>Electronics Letters</i> 22 (June 5, 1986), 677-679. {MOS tunable monolithic ring oscillator example}.
[TrV89]	Trischitta, P. R. and E. L. Varma, <i>Jitter in digital transmission systems</i> , Artech House, Inc., 1989. {good overview of jitter (textbook) ISBN 0-89006-248-X}.
[Wal89]	Walker, R. C., Fully Integrated High Speed Voltage Controlled Ring Oscillator, <i>U.S. Patent</i> 4,884,041, Granted Nov. 28, 1989. {Si bipolar tunable monolithic ring oscillator example}.

- [WHY91] Walker, R. C., T. Hornak, C. Yen, J. Doernberg and K. H. Springer, A 1.5Gb/s Link Interface Chipset for Computer Data Transmission, *IEEE Journal on Selected Areas in Communications 9*, 5 (June 1991), 698-703. {binary quantized phase detector with master transition}.
- [WWS92] Walker, R., J. Wu, C. Stout, B. Lai, C. Yen, T. Hornak and P. Petruno, A 2-Chip 1.5Gb/s Bus-Oriented Serial Link Interface, *ISSCC Digest of Technical Papers* 35 (February 19-21 1992), 226,227,291. {MT Code, Ring Osc} binary quantized phase detector with master transition}.
- [WSY97] Walker, R., C. Stout and C. Yen, A 2.488Gb/s Si-Bipolar Cloc k and Data Recovery IC with Robust Loss of Signal Detection, *ISSCC Digest of Technical Papers* 40 (February 6-8 1997), 246,247,466. {training loop, loss of signal detection, bbloop, ring oscillator}.
- [WHK98] Walker, R. C., K. Hsieh, T. A. Knotts and C. Yen, A 10Gb/s Si-Bipolar TX/RX Chipset for Computer Data Transmission, *ISSCC Digest of Technical Papers 41* (February 5-7 1998), 302,303,450. {multi-phase architecture, 8-phase VCO, ftdoubler amplifier, bb-loop}.
- [WKG94] Weigandt, T. C., B. Kim and P. R. Gray, Analysis of Timing Jitter in CMOS Ring Oscillators, *ISCAS proceedings, May 30 - June 2, 1994.* {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
- [WiF83] Widmar, A. X. and P. A. Franaszek, A DC Balanced, partitioned-Block 8B/10B Transmission Code, *IBM Journal of Research and Development 27*, 5 (September 1983), 440-451. {8b/10b encoding example - Precursor to Fiber Channel's 8B/10B code}.
- [Wu92] Wu, J. and R. C. Walker, A Bipolar 1.5Gb/s Monolithic Phase Locked Loop for Clock and Data Extraction, *VLSI Circuit Symposium*, Seattle, June 3-5, 1992. {positive feedback PLL loop filter}.
- [YTY80] Yamada, J., J. Temmyo, S. Yoshikawa and T. Kimura, 1.6 Gbit/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters*, 1980, 57-58. {basic SAW system, with discussion of power penalty for SAW phase shifts}.
- [Yam80] Yamada et al., J., 1.6Gb/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters 16*, 2 (17th January 1980), 57-58. {clock extraction by SAW}.
- [YFW82] Yen, C., Z. Fazarinc and R. Wheeler, Time-domain skin-effect model for transient analysis of lossy transmission lines., *Proceedings of the IEEE 70*, 7 (July 1982), 750-757. {skin-effect lossy transmission line transient simulation modelling}.
- [YKI84] Yoshikai, N., K. Katagiri and T. Ito, mB1C Code and its Performance in an Optical Communication System, *IEEE Transactions on Communications COM-32*, 2 (February 1984). {uses m binary bits + one complementary bit stuffed to break runs}.

RCW 01/15/97, updated 9/18/98

1) Eye Margin

- how much noise can be added to input while maintaining target BER? (voltage margin)
- How far can clock phase alignment be varied while maintaining target BER? phase margin)
- how does the static phase error vary versus frequency, temperature and process variation?
- Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics

- what is the jitter generation? (VCO phase noise, etc.)
- what is the jitter transfer function? (peaking and bandwidth)
- what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency

- how do long runlengths affect system performance?
- is bandwidth sufficient for individual isolated bit pulses?
- are there other problematic data patterns? (resonances)
- does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time

- what is the initial, power-on lock time?
- what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?

- are external capacitors, inductors needed?
- does the CDR need an external reference frequency?
- are laser-trimming or highly precise IC processes required?

6) Input/output impedance

- Is S11/S22 (input/output impedance) maintained across the frequency band?
- are reflections large enough to lead to eye closure and pattern dependency?
- is >15 dB return loss maintained across the band?

7) Power Supply

- does the CDR create power supply noise?
- how sensitive is the CDR to supply noise?
- Is the VCO self-modulated through its own supply noise? (can be "deadly")
- what is the total static power dissipation?
- what is the die temperature under worse case conditions?

- can false lock occur with particular data patterns?
- are false lock conditions be detected and eliminated?
- does the phase detector have VCO frequency leakage that can cause injection locking?
- can the VCO run faster than the phase/frequency detector can operate? (another "killer")
- have all latchup/deadly embrace conditions been considered and eliminated?

[Ale75]	Alexander, J. D. H., Clock Recovery from Random Binary Signals, <i>Electronics</i> <i>Letters</i> 11, 22 (30th October 1975), 541-542. {binary quantized phase detector}.
[AFD87]	Andrews, G. E., D. C. Farley, S. H. Dravitz, A. W. Schelling, P. C. Davis and L. G. McAfee, A 300Mb/s Clock Recovery and Data Retiming System, <i>ISSCC Digest of Technical Papers</i> , 1987, 188-189. {SAW Filter Clock Recovery with emphasis on phase alignment problem}
[Arm83]	Armitage, C. B., SAW Filter Retiming in the AT&T 432 Mb/s Lightwave Regenerator, <i>Conference Proceedings: AT&T Bell Labs., Holmdel, NJ, USA</i> , September 3-6, 1984, 102-103. {matches tempco of SAW to tempco of electronics.}.
[Baa86]	Baack, C., Optical Wide Band Transmission Systems, <i>CRC Press Inc.</i> , 1986. {example of PLL for clock recovery}.
[Buc92]	Buchwald et al., A., A 6GHz Integrated Phase-Locked Loop using AlGaAs/ GaAs Heterojunction Bipolar Transistors, <i>ISSCC Digest of Technical Papers</i> , 1992, 98,99,253. {Frequency multiplying ring oscillator}.
[Byr63]	Byrne et al., C. J., Systematic Jitter in Chain of Digital Regenerators, <i>The Bell System Technical Journal</i> , November 1963, 2679. {clock extraction by filtering}.
[CCI90]	CCITT, Digital Line systems based on the synchronous digital hierarchy for use on optical fiber cables, <i>CCITT G.958</i> , 1990. {SONET Payload test patterns regenerator scrambling}.
[Car56]	Carter, R. O., Low-Disparity Binary Coding System, <i>Electronics Letters 1</i> , 3 (May, 1956), 67-68. {conditional inversion data encoding disparity}.
[Cho92]	Chona, F. M. R., Draft Standard, SONET inter-office and intra-office line jitter re., <i>T1X1.3</i> , May 11, 1992. {Standards SONET jitter}.
[Con84]	Connor et al., P. O., A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984), 226-227. {GaAs Fet decision circuit example}.
[Cor79]	Cordell et al., R. R., A 50MHz Phase and Frequency Locked Loop, <i>IEEE Jour-</i> <i>nal of Solid State Circuits SC-14</i> , 6 (December 1979), 1003-1009. {quadricorrel- lator phase detector, Tunable LC Oscillator}.
[DR78]	D'Andrea, N. A. and F. Russo, A Binary Quantized Digital Phase Locked Loop: A Graphical Analysis, <i>IEEE Transactions on Communications COM-26</i> , 9 (September 1978), 1355-1364. {Analysis of BB loop}.
[DeV91]	DeVito et al., L., A 52 MHz and 155MHz Clock-Recovery PLL, <i>ISSCC Digest of Technical Papers</i> , February 13-15, 1991, 142, 143, 306. {multivibrator example, Negative resistor chargepump, rotational freq.det.}.
[Den88]	Den Dulk, R. C., Digital Fast Acquisition Method for Phase-Lock Loops, <i>Electronics Letters</i> 24, 17 (18th August 1988), 1079-1080. {2 order of magnitude locking speed-up with fancy slip detector & charge pump}.
[EnA87]	Enam, S. K. and A. A. Abidi, Decision and clock Recovery Circuits for Giga- hertz Optical Fiber Receivers in Silicon NMOS, <i>Journal of Lightwave Technol-</i> <i>ogy LT-5</i> , 3 (March 1987), 367-372. {MOS tunable monolithic ring oscillator example - Some clever circuit ideas for gigabit rates}.
[EnA92]	Enam, S. K. and A. A. Abidi, MOS Decision and Clock Recovery Circuits for Gb/s Optical-Fiber Receivers, <i>ISSCC Digest of Technical Papers</i> , 1992, 96,97,253. {quadratic phase detector} {MOS decision circuit example}.

[FHH84]	Faulkner, D. W., I. Hawker, R. J. Hawkins and A. Stevenson, An Integrated Regenerator for High Speed Optical Fiber Transmission Systems, <i>IEE Confer-</i> <i>ence Proceedings</i> (November 30 - December 1, 1983) 8-13. {uses rectifier/SAW combo}
[FLS63]	Feynman, R., R. B. Leighton and M. Sands, <i>The Feynman Lectures on Physics</i> , Addison-Wesley Publishing Company, 1963. {Short, simple presentation of timestep analysis for planetary motion}.
[FMW97]	Fiedler, A., R. Mactaggart, J. Welch and S. Krishnan, A 1.0625Gbps Transceiver with 2x-Oversampling and Transmit Signal Pre-Emphasis, <i>ISSCC Digest of Technical Papers 40</i> (February 6-8 1997), 238,239,464. {transmit pre-emphasis, skin loss equalizer}.
[Gal94]	Galton, I., Higher-order Delta-Sigma Frequency-to-Digital Conversion, <i>Proceedings of IEEE International Symposium on Circuits and Systems</i> (May 30 - June 2, 1994) 441-444 {Delta-Sigma BB loops phase tracking frequency digitalization PLL}.
[Gal95]	Galton, I., Analog-Input Digital Phase-Locked Loops for Precise Frequency and Phase Demodulation, <i>Transactions on Circuits and Systems-II: Analog and Digi-</i> <i>tal Signal Processing</i> 42, 10 (October 1995), 621-630. {good discussion of delta- sigma analysis of BB PLL's}.
[Gar79]	Gardner, F. M., <i>Phaselock Techniques, Second Edition</i> , John Wiley and Sons, Inc., 1979. {example of using exor-gate to generate clock component from NRZ data}
[Gla85]	Glance, B. S., New Phase-Lock Loop Circuit Providing Very Fast Acquistion Time, <i>IEEE Transactions on Microwave Theory and Techniques MTT-33</i> , 9 (Sep- tember 1985), 747-754. {adds non-linear time constant to speed PLL acquisition by 2 orders of mag.}
[Gri69]	Griffiths, J. M., Binary Code Suitable for Line Transmission, <i>Electronics Letters</i> 5, 4 (February 20, 1969), 79-81, {5b/6b encoding example}.
[GMP78]	Gruber, J., P. Marten, R. Petschacher and P. Russer, Electronic Circuits for High Bit Rate Digital Fiber Optic Communication Systems, <i>IEEE Transactions on</i> <i>Communications COM-26</i> , 7 (July 1978), 1088-1098.
[Gup75]	Gupta, S. C., Phase-Locked Loops, Proceedings of the IEEE 63, 2 (February 1975), 291-306. {Good systematic outline survey of communication-type PLL's}.
[Hau91a]	Hauenschild et al., J., A Silicon Bipolar Decision Circuit Operating up to 15Gb/ s, <i>IEEE Journal of Solid State Circuits 26</i> , No.11 (November 1991), 1734-1736. {Si bipolar decision circuit example}.
[Hau91b]	Hauser, M. W., Principles of Oversampling A/D Conversion, <i>J. Audio Eng. So.</i> <i>Vol 39</i> , 1/2 (Jan/February 1991), 3-26. {excellent tutorial on Delta Sigma AD, Oversampling, noiseshaping}.
[HeS88]	Hein, J. P. and J. W. Scott, z-Domain Model for Discrete-Time PLL's, <i>IEEE Transactions on Circuits and Systems 35</i> , 11 (November 1988), 1393-1400.
[Hog85]	Hogge, Jr., C. R., A Self Correcting Clock Recovery Circuit, <i>IEEE Transactions</i> on <i>Electron Devices ED-32</i> , 12 (December 1985), 2704-2706. {Original Hogge detector, interesting phase detector idea}.

[Hor92]	Hornak, T., Interface Electronics for Fiber Optic Computer Links, <i>Intensive</i> <i>Course on Practical Aspects in Analog IC Design</i> , Lausanne, Switzerland, June 29-July 10, 1992. {Excellent overview of components for serial optical data
[Hu93]	Hu, T. and P. Gray, A Monolithic 480 Mb/s AGC/Decision/Clock Recovery Cir- cuit in 1.2 um CMOS, <i>IEEE Journal of Solid State Circuits</i> 28, 12 (Dec. 1993) 1314-20 {CMOS parallel signal paths multiphase sampling CDR mux }
[Kas85]	Kasper et al., B. L., SAGM Avalanche Photodiode Optical Receiver for 2 Gbit/s and 4 Gbit/s, <i>Electronic Letters 21</i> , 21 (10th October 1985), 982-984. {eye dia- gram}
[KWG94]	Kim, B., T. C. Weigandt and P. R. Gray, PLL/DLL System Noise Analysis for Low Jitter Clock Synthesizer Design, <i>ISCAS proceedings</i> , May 30 - June 2, 1994, 31-34, {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
[Lai90]	Lai, B., Decision Circuit Lowers Transmission Bit Error Rates, <i>Microwaves and RF</i> , July 1990, 118-122. {Si bipolar decision circuit example}.
[LaW91]	Lai, B. and R. C. Walker, A Monolithic 622Mb/s Clock Extraction Data Retim- ing Circuit, <i>ISSCC Digest of Technical Papers 34</i> (February 13-15, 1991), 144.145. {binary quantized phase detector}.
[Lam93]	Lam, V. M. T., Microwave Oscillator Phase Noise Reduction Using Negative Resistance Compensation, <i>Electronics Letters 29</i> , 4 (February 18th, 1993), 379- 340. {Leeson negative resistance phase noise second harmonic IC}
[LiC81]	Lindsey, W. C. and C. M. Chie, A Survey of Digital Phase-Locked Loops, <i>Proceeding of the IEEE 69</i> , 4 (April 1981), 410-431. {Presents a good taxonomy of digital PLLs}
[Mac87]	MacDougall, M. H., <i>Simulating Computer Systems - Techniques and Tools</i> , The MIT Press, Cambridge, Massachusetts, 1987. {description and source code for event driven simulator}
[McG90]	McGaughey, J. T., Convert NRZ format to Biphase, <i>Electronic Design</i> , April 12, 1990. 86 {biphase example}
[OFC84]	O'Connor, P., P. G. Flahive, W. Clemetson, R. L. Panock, S. H. Wemple, S. C. Shunk and D. P. Takahashi, A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984),. {2.4 GHz ED GaAs Mesfet Flip-flop w/input buffer amp}.
[Ofe89]	Ofek, Y., The Conservative Code for Bit Synchronization, <i>IEEE Transactions on Communications</i> , 1989. {conserves transition number uses divider for clock recovery}
[OhT83]	Ohta, N. and T. Takada, High Speed GaAs SCFL Monolithic Integrated Decision Circuit for Gb/s Optical Repeaters, <i>Electronics Letters</i> , September 1983. {GaAs
[Par89]	Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, <i>Electronic Letters 25</i> (January 1989), 83-84. {clock extraction by filtering}.
[Pet88]	Petrovic, R., Low Redundancy Optical Fiber Line Code, <i>Journal of Optical Communication 9</i> , 3 (1988), 108-111. {13B/14B code design}.
[RaO91]	Ransijn, H. and P. O'Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, <i>JSSC 26</i> , 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

[Raz96a]	B. Razavi, ed., <i>Monolithic phase-locked loops and clock recovery circuits: the-</i> <i>ory and design</i> , IEEE Press, 1996. {A volume of selected reprints with bibliogra-
[Raz96b]	phy}. Razavi, B., Monolithic Phase-Locked Loops, <i>ISSCC Tutorial</i> , San Francisco,
[ReG73]	CA, February 7, 1996. {Good overview of non-data-driven PLL theory }. Reddy, C. P. and S. C. Gupta, A Class of All-Digital Phase Locked Loops: Mod- eling and Analysis, <i>IEEE Transactions on industrial Electronics and Control</i> <i>Instrumentation IECI-20</i> 4 (November 1973) 239-251. {discusses of binary-
[D CE8/1]	quantized phase detection }. Posenberg P. L. C. Chamzas and D. A. Fishman Timing Recovery with SAW
[KCI 0+]	Transversal Filters in the Regenerators of Undersea Long-Haul Fiber Transmission Systems, <i>Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {discusses jitter accumulation}.
[Ros84]	Rosenberg et al., R. L., Timing Recovery with SAW Transversal filters in the Regenerators of Undersea Long-haul Fiber Transmission Systems, <i>IEEE Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {clock extraction by SAW}.
[Ros85]	Ross, F. E., An Overview of FDDI: the Fiber Distributed Data Interface, <i>IEEE Journal on Selected Areas in Communications</i> 7, 7 (September 1985), 1046, Table 1, {4b/5b encoding example, example of frame synch characters}.
[RHF90]	Ross, F. E., J. R. Hamstra and R. L. Fink, FDDI - A LAN among MANs, <i>ACM Computer Communications Review</i> , July 1990, 16-31. {4b/5b encoding example}
[Rou76]	Rousseau, M., Block Codes for Optical-Fibre Communication, <i>Electronics Letters 12</i> , 18 (2nd September 1976), 478-479. {mBnB code discussion, run length
[RoM77]	Roza, E. and P. W. Millenaar, An Experimental 560 MBit/s Repeater with Inte- grated Circuits, <i>IEEE Transactions on Communications COM-25</i> , 9 (September 1977) {coax-based, good comparison of PLL, vs filter-type clock extraction}.
[RuG91]	Runge, K. and J. L. Gimlett, 20Gb/s AlGaAs HBT Decision Circuit IC, <i>Electronics Letters</i> 27, 25 (5th December 1991), 2376-2378. {GaAs HBT decision circuit example}.
[Run91]	Runge et al., K., Silicon Bipolar Integrated Circuits for Multi-Gb/s Optical Com- munication Systems, <i>IEEE Journal on Selected Areas in Communications 9</i> , 5 (June 1991), 640. {Si bipolar decision circuit example}.
[San82]	Sandera, L., Improve Datacomm Links by Using Manchester Code, EDN, February 17, 1982, 155-162. {manchester coding example}.
[Shi87]	Shin et al., D., Selfcorrecting Clock Recovery Circuit with Improved Jitter Per- formance, <i>Electronics Letters 23</i> , 3 (29th January 1987), 110-111. {Improved Hogge detector}.
[SyA86]	Syed, K. E. and A. A. Abidi, Gigahertz Voltage Controlled Oscillator, <i>Electronics Letters</i> 22 (June 5, 1986), 677-679. {MOS tunable monolithic ring oscillator example}.
[TrV89]	Trischitta, P. R. and E. L. Varma, <i>Jitter in digital transmission systems</i> , Artech House, Inc., 1989. {good overview of jitter (textbook) ISBN 0-89006-248-X}.
[Wal89]	Walker, R. C., Fully Integrated High Speed Voltage Controlled Ring Oscillator, <i>U.S. Patent</i> 4,884,041, Granted Nov. 28, 1989. {Si bipolar tunable monolithic ring oscillator example}.

- [WHY91] Walker, R. C., T. Hornak, C. Yen, J. Doernberg and K. H. Springer, A 1.5Gb/s Link Interface Chipset for Computer Data Transmission, *IEEE Journal on Selected Areas in Communications 9*, 5 (June 1991), 698-703. {binary quantized phase detector with master transition}.
- [WWS92] Walker, R., J. Wu, C. Stout, B. Lai, C. Yen, T. Hornak and P. Petruno, A 2-Chip 1.5Gb/s Bus-Oriented Serial Link Interface, *ISSCC Digest of Technical Papers* 35 (February 19-21 1992), 226,227,291. {MT Code, Ring Osc} binary quantized phase detector with master transition}.
- [WSY97] Walker, R., C. Stout and C. Yen, A 2.488Gb/s Si-Bipolar Cloc k and Data Recovery IC with Robust Loss of Signal Detection, *ISSCC Digest of Technical Papers* 40 (February 6-8 1997), 246,247,466. {training loop, loss of signal detection, bbloop, ring oscillator}.
- [WHK98] Walker, R. C., K. Hsieh, T. A. Knotts and C. Yen, A 10Gb/s Si-Bipolar TX/RX Chipset for Computer Data Transmission, *ISSCC Digest of Technical Papers 41* (February 5-7 1998), 302,303,450. {multi-phase architecture, 8-phase VCO, ftdoubler amplifier, bb-loop}.
- [WKG94] Weigandt, T. C., B. Kim and P. R. Gray, Analysis of Timing Jitter in CMOS Ring Oscillators, *ISCAS proceedings, May 30 - June 2, 1994.* {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
- [WiF83] Widmar, A. X. and P. A. Franaszek, A DC Balanced, partitioned-Block 8B/10B Transmission Code, *IBM Journal of Research and Development 27*, 5 (September 1983), 440-451. {8b/10b encoding example - Precursor to Fiber Channel's 8B/10B code}.
- [Wu92] Wu, J. and R. C. Walker, A Bipolar 1.5Gb/s Monolithic Phase Locked Loop for Clock and Data Extraction, *VLSI Circuit Symposium*, Seattle, June 3-5, 1992. {positive feedback PLL loop filter}.
- [YTY80] Yamada, J., J. Temmyo, S. Yoshikawa and T. Kimura, 1.6 Gbit/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters*, 1980, 57-58. {basic SAW system, with discussion of power penalty for SAW phase shifts}.
- [Yam80] Yamada et al., J., 1.6Gb/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters 16*, 2 (17th January 1980), 57-58. {clock extraction by SAW}.
- [YFW82] Yen, C., Z. Fazarinc and R. Wheeler, Time-domain skin-effect model for transient analysis of lossy transmission lines., *Proceedings of the IEEE 70*, 7 (July 1982), 750-757. {skin-effect lossy transmission line transient simulation modelling}.
- [YKI84] Yoshikai, N., K. Katagiri and T. Ito, mB1C Code and its Performance in an Optical Communication System, *IEEE Transactions on Communications COM-32*, 2 (February 1984). {uses m binary bits + one complementary bit stuffed to break runs}.

RCW 01/15/97, updated 9/18/98

1) Eye Margin

- how much noise can be added to input while maintaining target BER? (voltage margin)
- How far can clock phase alignment be varied while maintaining target BER? phase margin)
- how does the static phase error vary versus frequency, temperature and process variation?
- Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics

- what is the jitter generation? (VCO phase noise, etc.)
- what is the jitter transfer function? (peaking and bandwidth)
- what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency

- how do long runlengths affect system performance?
- is bandwidth sufficient for individual isolated bit pulses?
- are there other problematic data patterns? (resonances)
- does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time

- what is the initial, power-on lock time?
- what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?

- are external capacitors, inductors needed?
- does the CDR need an external reference frequency?
- are laser-trimming or highly precise IC processes required?

6) Input/output impedance

- Is S11/S22 (input/output impedance) maintained across the frequency band?
- are reflections large enough to lead to eye closure and pattern dependency?
- is >15 dB return loss maintained across the band?

7) Power Supply

- does the CDR create power supply noise?
- how sensitive is the CDR to supply noise?
- Is the VCO self-modulated through its own supply noise? (can be "deadly")
- what is the total static power dissipation?
- what is the die temperature under worse case conditions?

- can false lock occur with particular data patterns?
- are false lock conditions be detected and eliminated?
- does the phase detector have VCO frequency leakage that can cause injection locking?
- can the VCO run faster than the phase/frequency detector can operate? (another "killer")
- have all latchup/deadly embrace conditions been considered and eliminated?

[Ale75]	Alexander, J. D. H., Clock Recovery from Random Binary Signals, <i>Electronics</i> <i>Letters</i> 11, 22 (30th October 1975), 541-542. {binary quantized phase detector}.
[AFD87]	Andrews, G. E., D. C. Farley, S. H. Dravitz, A. W. Schelling, P. C. Davis and L. G. McAfee, A 300Mb/s Clock Recovery and Data Retiming System, <i>ISSCC Digest of Technical Papers</i> , 1987, 188-189. {SAW Filter Clock Recovery with emphasis on phase alignment problem}
[Arm83]	Armitage, C. B., SAW Filter Retiming in the AT&T 432 Mb/s Lightwave Regenerator, <i>Conference Proceedings: AT&T Bell Labs., Holmdel, NJ, USA</i> , September 3-6, 1984, 102-103. {matches tempco of SAW to tempco of electronics.}.
[Baa86]	Baack, C., Optical Wide Band Transmission Systems, <i>CRC Press Inc.</i> , 1986. {example of PLL for clock recovery}.
[Buc92]	Buchwald et al., A., A 6GHz Integrated Phase-Locked Loop using AlGaAs/ GaAs Heterojunction Bipolar Transistors, <i>ISSCC Digest of Technical Papers</i> , 1992, 98,99,253. {Frequency multiplying ring oscillator}.
[Byr63]	Byrne et al., C. J., Systematic Jitter in Chain of Digital Regenerators, <i>The Bell System Technical Journal</i> , November 1963, 2679. {clock extraction by filtering}.
[CCI90]	CCITT, Digital Line systems based on the synchronous digital hierarchy for use on optical fiber cables, <i>CCITT G.958</i> , 1990. {SONET Payload test patterns regenerator scrambling}.
[Car56]	Carter, R. O., Low-Disparity Binary Coding System, <i>Electronics Letters 1</i> , 3 (May, 1956), 67-68. {conditional inversion data encoding disparity}.
[Cho92]	Chona, F. M. R., Draft Standard, SONET inter-office and intra-office line jitter re., <i>T1X1.3</i> , May 11, 1992. {Standards SONET jitter}.
[Con84]	Connor et al., P. O., A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984), 226-227. {GaAs Fet decision circuit example}.
[Cor79]	Cordell et al., R. R., A 50MHz Phase and Frequency Locked Loop, <i>IEEE Jour-</i> <i>nal of Solid State Circuits SC-14</i> , 6 (December 1979), 1003-1009. {quadricorrel- lator phase detector, Tunable LC Oscillator}.
[DR78]	D'Andrea, N. A. and F. Russo, A Binary Quantized Digital Phase Locked Loop: A Graphical Analysis, <i>IEEE Transactions on Communications COM-26</i> , 9 (September 1978), 1355-1364. {Analysis of BB loop}.
[DeV91]	DeVito et al., L., A 52 MHz and 155MHz Clock-Recovery PLL, <i>ISSCC Digest of Technical Papers</i> , February 13-15, 1991, 142, 143, 306. {multivibrator example, Negative resistor chargepump, rotational freq.det.}.
[Den88]	Den Dulk, R. C., Digital Fast Acquisition Method for Phase-Lock Loops, <i>Electronics Letters</i> 24, 17 (18th August 1988), 1079-1080. {2 order of magnitude locking speed-up with fancy slip detector & charge pump}.
[EnA87]	Enam, S. K. and A. A. Abidi, Decision and clock Recovery Circuits for Giga- hertz Optical Fiber Receivers in Silicon NMOS, <i>Journal of Lightwave Technol-</i> <i>ogy LT-5</i> , 3 (March 1987), 367-372. {MOS tunable monolithic ring oscillator example - Some clever circuit ideas for gigabit rates}.
[EnA92]	Enam, S. K. and A. A. Abidi, MOS Decision and Clock Recovery Circuits for Gb/s Optical-Fiber Receivers, <i>ISSCC Digest of Technical Papers</i> , 1992, 96,97,253. {quadratic phase detector} {MOS decision circuit example}.

[FHH84]	Faulkner, D. W., I. Hawker, R. J. Hawkins and A. Stevenson, An Integrated Regenerator for High Speed Optical Fiber Transmission Systems, <i>IEE Confer-</i> <i>ence Proceedings</i> (November 30 - December 1, 1983) 8-13. {uses rectifier/SAW combo}
[FLS63]	Feynman, R., R. B. Leighton and M. Sands, <i>The Feynman Lectures on Physics</i> , Addison-Wesley Publishing Company, 1963. {Short, simple presentation of timestep analysis for planetary motion}.
[FMW97]	Fiedler, A., R. Mactaggart, J. Welch and S. Krishnan, A 1.0625Gbps Transceiver with 2x-Oversampling and Transmit Signal Pre-Emphasis, <i>ISSCC Digest of Technical Papers 40</i> (February 6-8 1997), 238,239,464. {transmit pre-emphasis, skin loss equalizer}.
[Gal94]	Galton, I., Higher-order Delta-Sigma Frequency-to-Digital Conversion, <i>Proceedings of IEEE International Symposium on Circuits and Systems</i> (May 30 - June 2, 1994) 441-444 {Delta-Sigma BB loops phase tracking frequency digitalization PLL}.
[Gal95]	Galton, I., Analog-Input Digital Phase-Locked Loops for Precise Frequency and Phase Demodulation, <i>Transactions on Circuits and Systems-II: Analog and Digi-</i> <i>tal Signal Processing</i> 42, 10 (October 1995), 621-630. {good discussion of delta- sigma analysis of BB PLL's}.
[Gar79]	Gardner, F. M., <i>Phaselock Techniques, Second Edition</i> , John Wiley and Sons, Inc., 1979. {example of using exor-gate to generate clock component from NRZ data}
[Gla85]	Glance, B. S., New Phase-Lock Loop Circuit Providing Very Fast Acquistion Time, <i>IEEE Transactions on Microwave Theory and Techniques MTT-33</i> , 9 (Sep- tember 1985), 747-754. {adds non-linear time constant to speed PLL acquisition by 2 orders of mag.}
[Gri69]	Griffiths, J. M., Binary Code Suitable for Line Transmission, <i>Electronics Letters</i> 5, 4 (February 20, 1969), 79-81, {5b/6b encoding example}.
[GMP78]	Gruber, J., P. Marten, R. Petschacher and P. Russer, Electronic Circuits for High Bit Rate Digital Fiber Optic Communication Systems, <i>IEEE Transactions on</i> <i>Communications COM-26</i> , 7 (July 1978), 1088-1098.
[Gup75]	Gupta, S. C., Phase-Locked Loops, Proceedings of the IEEE 63, 2 (February 1975), 291-306. {Good systematic outline survey of communication-type PLL's}.
[Hau91a]	Hauenschild et al., J., A Silicon Bipolar Decision Circuit Operating up to 15Gb/ s, <i>IEEE Journal of Solid State Circuits 26</i> , No.11 (November 1991), 1734-1736. {Si bipolar decision circuit example}.
[Hau91b]	Hauser, M. W., Principles of Oversampling A/D Conversion, <i>J. Audio Eng. So.</i> <i>Vol 39</i> , 1/2 (Jan/February 1991), 3-26. {excellent tutorial on Delta Sigma AD, Oversampling, noiseshaping}.
[HeS88]	Hein, J. P. and J. W. Scott, z-Domain Model for Discrete-Time PLL's, <i>IEEE Transactions on Circuits and Systems 35</i> , 11 (November 1988), 1393-1400.
[Hog85]	Hogge, Jr., C. R., A Self Correcting Clock Recovery Circuit, <i>IEEE Transactions</i> on <i>Electron Devices ED-32</i> , 12 (December 1985), 2704-2706. {Original Hogge detector, interesting phase detector idea}.

[Hor92]	Hornak, T., Interface Electronics for Fiber Optic Computer Links, <i>Intensive</i> <i>Course on Practical Aspects in Analog IC Design</i> , Lausanne, Switzerland, June 29-July 10, 1992. {Excellent overview of components for serial optical data
[Hu93]	Hu, T. and P. Gray, A Monolithic 480 Mb/s AGC/Decision/Clock Recovery Cir- cuit in 1.2 um CMOS, <i>IEEE Journal of Solid State Circuits</i> 28, 12 (Dec. 1993) 1314-20 {CMOS parallel signal paths multiphase sampling CDR mux }
[Kas85]	Kasper et al., B. L., SAGM Avalanche Photodiode Optical Receiver for 2 Gbit/s and 4 Gbit/s, <i>Electronic Letters 21</i> , 21 (10th October 1985), 982-984. {eye dia- gram}
[KWG94]	Kim, B., T. C. Weigandt and P. R. Gray, PLL/DLL System Noise Analysis for Low Jitter Clock Synthesizer Design, <i>ISCAS proceedings</i> , May 30 - June 2, 1994, 31-34, {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
[Lai90]	Lai, B., Decision Circuit Lowers Transmission Bit Error Rates, <i>Microwaves and RF</i> , July 1990, 118-122. {Si bipolar decision circuit example}.
[LaW91]	Lai, B. and R. C. Walker, A Monolithic 622Mb/s Clock Extraction Data Retim- ing Circuit, <i>ISSCC Digest of Technical Papers 34</i> (February 13-15, 1991), 144.145. {binary quantized phase detector}.
[Lam93]	Lam, V. M. T., Microwave Oscillator Phase Noise Reduction Using Negative Resistance Compensation, <i>Electronics Letters 29</i> , 4 (February 18th, 1993), 379- 340. {Leeson negative resistance phase noise second harmonic IC}
[LiC81]	Lindsey, W. C. and C. M. Chie, A Survey of Digital Phase-Locked Loops, <i>Proceeding of the IEEE 69</i> , 4 (April 1981), 410-431. {Presents a good taxonomy of digital PLLs}
[Mac87]	MacDougall, M. H., <i>Simulating Computer Systems - Techniques and Tools</i> , The MIT Press, Cambridge, Massachusetts, 1987. {description and source code for event driven simulator}
[McG90]	McGaughey, J. T., Convert NRZ format to Biphase, <i>Electronic Design</i> , April 12, 1990. 86 {biphase example}
[OFC84]	O'Connor, P., P. G. Flahive, W. Clemetson, R. L. Panock, S. H. Wemple, S. C. Shunk and D. P. Takahashi, A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984),. {2.4 GHz ED GaAs Mesfet Flip-flop w/input buffer amp}.
[Ofe89]	Ofek, Y., The Conservative Code for Bit Synchronization, <i>IEEE Transactions on Communications</i> , 1989. {conserves transition number uses divider for clock recovery}
[OhT83]	Ohta, N. and T. Takada, High Speed GaAs SCFL Monolithic Integrated Decision Circuit for Gb/s Optical Repeaters, <i>Electronics Letters</i> , September 1983. {GaAs
[Par89]	Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, <i>Electronic Letters 25</i> (January 1989), 83-84. {clock extraction by filtering}.
[Pet88]	Petrovic, R., Low Redundancy Optical Fiber Line Code, <i>Journal of Optical Communication 9</i> , 3 (1988), 108-111. {13B/14B code design}.
[RaO91]	Ransijn, H. and P. O'Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, <i>JSSC 26</i> , 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

[Raz96a]	B. Razavi, ed., <i>Monolithic phase-locked loops and clock recovery circuits: the-</i> <i>ory and design</i> , IEEE Press, 1996. {A volume of selected reprints with bibliogra-
[Raz96b]	phy}. Razavi, B., Monolithic Phase-Locked Loops, <i>ISSCC Tutorial</i> , San Francisco,
[ReG73]	CA, February 7, 1996. {Good overview of non-data-driven PLL theory }. Reddy, C. P. and S. C. Gupta, A Class of All-Digital Phase Locked Loops: Mod- eling and Analysis, <i>IEEE Transactions on industrial Electronics and Control</i> <i>Instrumentation IECI-20</i> 4 (November 1973) 239-251. {discusses of binary-
[D CE8/1]	quantized phase detection }. Posenberg P. L. C. Chamzas and D. A. Fishman Timing Recovery with SAW
[KCI 0+]	Transversal Filters in the Regenerators of Undersea Long-Haul Fiber Transmission Systems, <i>Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {discusses jitter accumulation}.
[Ros84]	Rosenberg et al., R. L., Timing Recovery with SAW Transversal filters in the Regenerators of Undersea Long-haul Fiber Transmission Systems, <i>IEEE Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {clock extraction by SAW}.
[Ros85]	Ross, F. E., An Overview of FDDI: the Fiber Distributed Data Interface, <i>IEEE Journal on Selected Areas in Communications</i> 7, 7 (September 1985), 1046, Table 1, {4b/5b encoding example, example of frame synch characters}.
[RHF90]	Ross, F. E., J. R. Hamstra and R. L. Fink, FDDI - A LAN among MANs, <i>ACM Computer Communications Review</i> , July 1990, 16-31. {4b/5b encoding example}
[Rou76]	Rousseau, M., Block Codes for Optical-Fibre Communication, <i>Electronics Letters 12</i> , 18 (2nd September 1976), 478-479. {mBnB code discussion, run length
[RoM77]	Roza, E. and P. W. Millenaar, An Experimental 560 MBit/s Repeater with Inte- grated Circuits, <i>IEEE Transactions on Communications COM-25</i> , 9 (September 1977) {coax-based, good comparison of PLL, vs filter-type clock extraction}.
[RuG91]	Runge, K. and J. L. Gimlett, 20Gb/s AlGaAs HBT Decision Circuit IC, <i>Electronics Letters</i> 27, 25 (5th December 1991), 2376-2378. {GaAs HBT decision circuit example}.
[Run91]	Runge et al., K., Silicon Bipolar Integrated Circuits for Multi-Gb/s Optical Com- munication Systems, <i>IEEE Journal on Selected Areas in Communications 9</i> , 5 (June 1991), 640. {Si bipolar decision circuit example}.
[San82]	Sandera, L., Improve Datacomm Links by Using Manchester Code, EDN, February 17, 1982, 155-162. {manchester coding example}.
[Shi87]	Shin et al., D., Selfcorrecting Clock Recovery Circuit with Improved Jitter Per- formance, <i>Electronics Letters 23</i> , 3 (29th January 1987), 110-111. {Improved Hogge detector}.
[SyA86]	Syed, K. E. and A. A. Abidi, Gigahertz Voltage Controlled Oscillator, <i>Electronics Letters</i> 22 (June 5, 1986), 677-679. {MOS tunable monolithic ring oscillator example}.
[TrV89]	Trischitta, P. R. and E. L. Varma, <i>Jitter in digital transmission systems</i> , Artech House, Inc., 1989. {good overview of jitter (textbook) ISBN 0-89006-248-X}.
[Wal89]	Walker, R. C., Fully Integrated High Speed Voltage Controlled Ring Oscillator, <i>U.S. Patent</i> 4,884,041, Granted Nov. 28, 1989. {Si bipolar tunable monolithic ring oscillator example}.

- [WHY91] Walker, R. C., T. Hornak, C. Yen, J. Doernberg and K. H. Springer, A 1.5Gb/s Link Interface Chipset for Computer Data Transmission, *IEEE Journal on Selected Areas in Communications 9*, 5 (June 1991), 698-703. {binary quantized phase detector with master transition}.
- [WWS92] Walker, R., J. Wu, C. Stout, B. Lai, C. Yen, T. Hornak and P. Petruno, A 2-Chip 1.5Gb/s Bus-Oriented Serial Link Interface, *ISSCC Digest of Technical Papers* 35 (February 19-21 1992), 226,227,291. {MT Code, Ring Osc} binary quantized phase detector with master transition}.
- [WSY97] Walker, R., C. Stout and C. Yen, A 2.488Gb/s Si-Bipolar Cloc k and Data Recovery IC with Robust Loss of Signal Detection, *ISSCC Digest of Technical Papers* 40 (February 6-8 1997), 246,247,466. {training loop, loss of signal detection, bbloop, ring oscillator}.
- [WHK98] Walker, R. C., K. Hsieh, T. A. Knotts and C. Yen, A 10Gb/s Si-Bipolar TX/RX Chipset for Computer Data Transmission, *ISSCC Digest of Technical Papers 41* (February 5-7 1998), 302,303,450. {multi-phase architecture, 8-phase VCO, ftdoubler amplifier, bb-loop}.
- [WKG94] Weigandt, T. C., B. Kim and P. R. Gray, Analysis of Timing Jitter in CMOS Ring Oscillators, *ISCAS proceedings, May 30 - June 2, 1994.* {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
- [WiF83] Widmar, A. X. and P. A. Franaszek, A DC Balanced, partitioned-Block 8B/10B Transmission Code, *IBM Journal of Research and Development 27*, 5 (September 1983), 440-451. {8b/10b encoding example - Precursor to Fiber Channel's 8B/10B code}.
- [Wu92] Wu, J. and R. C. Walker, A Bipolar 1.5Gb/s Monolithic Phase Locked Loop for Clock and Data Extraction, *VLSI Circuit Symposium*, Seattle, June 3-5, 1992. {positive feedback PLL loop filter}.
- [YTY80] Yamada, J., J. Temmyo, S. Yoshikawa and T. Kimura, 1.6 Gbit/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters*, 1980, 57-58. {basic SAW system, with discussion of power penalty for SAW phase shifts}.
- [Yam80] Yamada et al., J., 1.6Gb/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters 16*, 2 (17th January 1980), 57-58. {clock extraction by SAW}.
- [YFW82] Yen, C., Z. Fazarinc and R. Wheeler, Time-domain skin-effect model for transient analysis of lossy transmission lines., *Proceedings of the IEEE 70*, 7 (July 1982), 750-757. {skin-effect lossy transmission line transient simulation modelling}.
- [YKI84] Yoshikai, N., K. Katagiri and T. Ito, mB1C Code and its Performance in an Optical Communication System, *IEEE Transactions on Communications COM-32*, 2 (February 1984). {uses m binary bits + one complementary bit stuffed to break runs}.

RCW 01/15/97, updated 9/18/98

1) Eye Margin

- how much noise can be added to input while maintaining target BER? (voltage margin)
- How far can clock phase alignment be varied while maintaining target BER? phase margin)
- how does the static phase error vary versus frequency, temperature and process variation?
- Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics

- what is the jitter generation? (VCO phase noise, etc.)
- what is the jitter transfer function? (peaking and bandwidth)
- what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency

- how do long runlengths affect system performance?
- is bandwidth sufficient for individual isolated bit pulses?
- are there other problematic data patterns? (resonances)
- does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time

- what is the initial, power-on lock time?
- what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?

- are external capacitors, inductors needed?
- does the CDR need an external reference frequency?
- are laser-trimming or highly precise IC processes required?

6) Input/output impedance

- Is S11/S22 (input/output impedance) maintained across the frequency band?
- are reflections large enough to lead to eye closure and pattern dependency?
- is >15 dB return loss maintained across the band?

7) Power Supply

- does the CDR create power supply noise?
- how sensitive is the CDR to supply noise?
- Is the VCO self-modulated through its own supply noise? (can be "deadly")
- what is the total static power dissipation?
- what is the die temperature under worse case conditions?

- can false lock occur with particular data patterns?
- are false lock conditions be detected and eliminated?
- does the phase detector have VCO frequency leakage that can cause injection locking?
- can the VCO run faster than the phase/frequency detector can operate? (another "killer")
- have all latchup/deadly embrace conditions been considered and eliminated?

[Ale75]	Alexander, J. D. H., Clock Recovery from Random Binary Signals, <i>Electronics</i> <i>Letters</i> 11, 22 (30th October 1975), 541-542. {binary quantized phase detector}.
[AFD87]	Andrews, G. E., D. C. Farley, S. H. Dravitz, A. W. Schelling, P. C. Davis and L. G. McAfee, A 300Mb/s Clock Recovery and Data Retiming System, <i>ISSCC Digest of Technical Papers</i> , 1987, 188-189. {SAW Filter Clock Recovery with emphasis on phase alignment problem}
[Arm83]	Armitage, C. B., SAW Filter Retiming in the AT&T 432 Mb/s Lightwave Regenerator, <i>Conference Proceedings: AT&T Bell Labs., Holmdel, NJ, USA</i> , September 3-6, 1984, 102-103. {matches tempco of SAW to tempco of electronics.}.
[Baa86]	Baack, C., Optical Wide Band Transmission Systems, <i>CRC Press Inc.</i> , 1986. {example of PLL for clock recovery}.
[Buc92]	Buchwald et al., A., A 6GHz Integrated Phase-Locked Loop using AlGaAs/ GaAs Heterojunction Bipolar Transistors, <i>ISSCC Digest of Technical Papers</i> , 1992, 98,99,253. {Frequency multiplying ring oscillator}.
[Byr63]	Byrne et al., C. J., Systematic Jitter in Chain of Digital Regenerators, <i>The Bell System Technical Journal</i> , November 1963, 2679. {clock extraction by filtering}.
[CCI90]	CCITT, Digital Line systems based on the synchronous digital hierarchy for use on optical fiber cables, <i>CCITT G.958</i> , 1990. {SONET Payload test patterns regenerator scrambling}.
[Car56]	Carter, R. O., Low-Disparity Binary Coding System, <i>Electronics Letters 1</i> , 3 (May, 1956), 67-68. {conditional inversion data encoding disparity}.
[Cho92]	Chona, F. M. R., Draft Standard, SONET inter-office and intra-office line jitter re., <i>T1X1.3</i> , May 11, 1992. {Standards SONET jitter}.
[Con84]	Connor et al., P. O., A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984), 226-227. {GaAs Fet decision circuit example}.
[Cor79]	Cordell et al., R. R., A 50MHz Phase and Frequency Locked Loop, <i>IEEE Jour-</i> <i>nal of Solid State Circuits SC-14</i> , 6 (December 1979), 1003-1009. {quadricorrel- lator phase detector, Tunable LC Oscillator}.
[DR78]	D'Andrea, N. A. and F. Russo, A Binary Quantized Digital Phase Locked Loop: A Graphical Analysis, <i>IEEE Transactions on Communications COM-26</i> , 9 (September 1978), 1355-1364. {Analysis of BB loop}.
[DeV91]	DeVito et al., L., A 52 MHz and 155MHz Clock-Recovery PLL, <i>ISSCC Digest of Technical Papers</i> , February 13-15, 1991, 142, 143, 306. {multivibrator example, Negative resistor chargepump, rotational freq.det.}.
[Den88]	Den Dulk, R. C., Digital Fast Acquisition Method for Phase-Lock Loops, <i>Electronics Letters</i> 24, 17 (18th August 1988), 1079-1080. {2 order of magnitude locking speed-up with fancy slip detector & charge pump}.
[EnA87]	Enam, S. K. and A. A. Abidi, Decision and clock Recovery Circuits for Giga- hertz Optical Fiber Receivers in Silicon NMOS, <i>Journal of Lightwave Technol-</i> <i>ogy LT-5</i> , 3 (March 1987), 367-372. {MOS tunable monolithic ring oscillator example - Some clever circuit ideas for gigabit rates}.
[EnA92]	Enam, S. K. and A. A. Abidi, MOS Decision and Clock Recovery Circuits for Gb/s Optical-Fiber Receivers, <i>ISSCC Digest of Technical Papers</i> , 1992, 96,97,253. {quadratic phase detector} {MOS decision circuit example}.

[FHH84]	Faulkner, D. W., I. Hawker, R. J. Hawkins and A. Stevenson, An Integrated Regenerator for High Speed Optical Fiber Transmission Systems, <i>IEE Confer-</i> <i>ence Proceedings</i> (November 30 - December 1, 1983) 8-13. {uses rectifier/SAW combo}
[FLS63]	Feynman, R., R. B. Leighton and M. Sands, <i>The Feynman Lectures on Physics</i> , Addison-Wesley Publishing Company, 1963. {Short, simple presentation of timestep analysis for planetary motion}
[FMW97]	Fiedler, A., R. Mactaggart, J. Welch and S. Krishnan, A 1.0625Gbps Transceiver with 2x-Oversampling and Transmit Signal Pre-Emphasis, <i>ISSCC Digest of Technical Papers 40</i> (February 6-8 1997), 238,239,464. {transmit pre-emphasis, skin loss equalizer}.
[Gal94]	Galton, I., Higher-order Delta-Sigma Frequency-to-Digital Conversion, <i>Proceedings of IEEE International Symposium on Circuits and Systems</i> (May 30 - June 2, 1994) 441-444 {Delta-Sigma BB loops phase tracking frequency digitalization PLL}.
[Gal95]	Galton, I., Analog-Input Digital Phase-Locked Loops for Precise Frequency and Phase Demodulation, <i>Transactions on Circuits and Systems-II: Analog and Digi-</i> <i>tal Signal Processing</i> 42, 10 (October 1995), 621-630. {good discussion of delta- sigma analysis of BB PLL's}.
[Gar79]	Gardner, F. M., <i>Phaselock Techniques, Second Edition</i> , John Wiley and Sons, Inc., 1979. {example of using exor-gate to generate clock component from NRZ data}
[Gla85]	Glance, B. S., New Phase-Lock Loop Circuit Providing Very Fast Acquistion Time, <i>IEEE Transactions on Microwave Theory and Techniques MTT-33</i> , 9 (Sep- tember 1985), 747-754. {adds non-linear time constant to speed PLL acquisition by 2 orders of mag.}
[Gri69]	Griffiths, J. M., Binary Code Suitable for Line Transmission, <i>Electronics Letters</i> 5, 4 (February 20, 1969), 79-81, {5b/6b encoding example}.
[GMP78]	Gruber, J., P. Marten, R. Petschacher and P. Russer, Electronic Circuits for High Bit Rate Digital Fiber Optic Communication Systems, <i>IEEE Transactions on</i> <i>Communications COM-26</i> , 7 (July 1978), 1088-1098.
[Gup75]	Gupta, S. C., Phase-Locked Loops, Proceedings of the IEEE 63, 2 (February 1975), 291-306. {Good systematic outline survey of communication-type PLL's}.
[Hau91a]	Hauenschild et al., J., A Silicon Bipolar Decision Circuit Operating up to 15Gb/ s, <i>IEEE Journal of Solid State Circuits 26</i> , No.11 (November 1991), 1734-1736. {Si bipolar decision circuit example}.
[Hau91b]	Hauser, M. W., Principles of Oversampling A/D Conversion, <i>J. Audio Eng. So.</i> <i>Vol 39</i> , 1/2 (Jan/February 1991), 3-26. {excellent tutorial on Delta Sigma AD, Oversampling, noiseshaping}.
[HeS88]	Hein, J. P. and J. W. Scott, z-Domain Model for Discrete-Time PLL's, <i>IEEE Transactions on Circuits and Systems 35</i> , 11 (November 1988), 1393-1400.
[Hog85]	Hogge, Jr., C. R., A Self Correcting Clock Recovery Circuit, <i>IEEE Transactions</i> on <i>Electron Devices ED-32</i> , 12 (December 1985), 2704-2706. {Original Hogge detector, interesting phase detector idea}.

[Hor92]	Hornak, T., Interface Electronics for Fiber Optic Computer Links, <i>Intensive</i> <i>Course on Practical Aspects in Analog IC Design</i> , Lausanne, Switzerland, June 29-July 10, 1992. {Excellent overview of components for serial optical data
[Hu93]	Hu, T. and P. Gray, A Monolithic 480 Mb/s AGC/Decision/Clock Recovery Cir- cuit in 1.2 um CMOS, <i>IEEE Journal of Solid State Circuits</i> 28, 12 (Dec. 1993) 1314-20 (CMOS parallel signal paths multiphase sampling CDR mux)
[Kas85]	Kasper et al., B. L., SAGM Avalanche Photodiode Optical Receiver for 2 Gbit/s and 4 Gbit/s, <i>Electronic Letters 21</i> , 21 (10th October 1985), 982-984. {eye dia- gram}
[KWG94]	Kim, B., T. C. Weigandt and P. R. Gray, PLL/DLL System Noise Analysis for Low Jitter Clock Synthesizer Design, <i>ISCAS proceedings</i> , May 30 - June 2, 1994, 31-34, {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
[Lai90]	Lai, B., Decision Circuit Lowers Transmission Bit Error Rates, <i>Microwaves and RF</i> , July 1990, 118-122. {Si bipolar decision circuit example}.
[LaW91]	Lai, B. and R. C. Walker, A Monolithic 622Mb/s Clock Extraction Data Retim- ing Circuit, <i>ISSCC Digest of Technical Papers 34</i> (February 13-15, 1991), 144.145. {binary quantized phase detector}.
[Lam93]	Lam, V. M. T., Microwave Oscillator Phase Noise Reduction Using Negative Resistance Compensation, <i>Electronics Letters 29</i> , 4 (February 18th, 1993), 379- 340. {Leeson negative resistance phase noise second harmonic IC}
[LiC81]	Lindsey, W. C. and C. M. Chie, A Survey of Digital Phase-Locked Loops, <i>Proceeding of the IEEE 69</i> , 4 (April 1981), 410-431. {Presents a good taxonomy of digital PLLs}
[Mac87]	MacDougall, M. H., <i>Simulating Computer Systems - Techniques and Tools</i> , The MIT Press, Cambridge, Massachusetts, 1987. {description and source code for event driven simulator}
[McG90]	McGaughey, J. T., Convert NRZ format to Biphase, <i>Electronic Design</i> , April 12, 1990. 86 {biphase example}
[OFC84]	O'Connor, P., P. G. Flahive, W. Clemetson, R. L. Panock, S. H. Wemple, S. C. Shunk and D. P. Takahashi, A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984),. {2.4 GHz ED GaAs Mesfet Flip-flop w/input buffer amp}.
[Ofe89]	Ofek, Y., The Conservative Code for Bit Synchronization, <i>IEEE Transactions on Communications</i> , 1989. {conserves transition number uses divider for clock recovery}
[OhT83]	Ohta, N. and T. Takada, High Speed GaAs SCFL Monolithic Integrated Decision Circuit for Gb/s Optical Repeaters, <i>Electronics Letters</i> , September 1983. {GaAs
[Par89]	Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, <i>Electronic Letters 25</i> (January 1989), 83-84. {clock extraction by filtering}.
[Pet88]	Petrovic, R., Low Redundancy Optical Fiber Line Code, <i>Journal of Optical Communication 9</i> , 3 (1988), 108-111. {13B/14B code design}.
[RaO91]	Ransijn, H. and P. O'Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, <i>JSSC 26</i> , 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

[Raz96a]	B. Razavi, ed., <i>Monolithic phase-locked loops and clock recovery circuits: the-</i> <i>ory and design</i> , IEEE Press, 1996. {A volume of selected reprints with bibliogra-
[Raz96b]	phy}. Razavi, B., Monolithic Phase-Locked Loops, <i>ISSCC Tutorial</i> , San Francisco,
[ReG73]	CA, February 7, 1996. {Good overview of non-data-driven PLL theory}. Reddy, C. P. and S. C. Gupta, A Class of All-Digital Phase Locked Loops: Modeling and Analysis, <i>IEEE Transactions on industrial Electronics and Control</i> <i>Instrumentation IECL</i> 20, 4 (November 1973), 239-251. {discusses of binary-
[D CE8/1]	quantized phase detection }. Posenberg P. L. C. Chamzas and D. A. Fishman Timing Recovery with SAW
[KCI 0+]	Transversal Filters in the Regenerators of Undersea Long-Haul Fiber Transmission Systems, <i>Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {discusses jitter accumulation}.
[Ros84]	Rosenberg et al., R. L., Timing Recovery with SAW Transversal filters in the Regenerators of Undersea Long-haul Fiber Transmission Systems, <i>IEEE Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {clock extraction by SAW}.
[Ros85]	Ross, F. E., An Overview of FDDI: the Fiber Distributed Data Interface, <i>IEEE Journal on Selected Areas in Communications</i> 7, 7 (September 1985), 1046, Table 1, {4b/5b encoding example, example of frame synch characters}.
[RHF90]	Ross, F. E., J. R. Hamstra and R. L. Fink, FDDI - A LAN among MANs, <i>ACM Computer Communications Review</i> , July 1990, 16-31. {4b/5b encoding example}
[Rou76]	Rousseau, M., Block Codes for Optical-Fibre Communication, <i>Electronics Let</i> - ters 12, 18 (2nd September 1976), 478-479. {mBnB code discussion, run length
[RoM77]	Roza, E. and P. W. Millenaar, An Experimental 560 MBit/s Repeater with Inte- grated Circuits, <i>IEEE Transactions on Communications COM-25</i> , 9 (September 1977) {coax-based, good comparison of PLL, vs filter-type clock extraction}.
[RuG91]	Runge, K. and J. L. Gimlett, 20Gb/s AlGaAs HBT Decision Circuit IC, <i>Electronics Letters</i> 27, 25 (5th December 1991), 2376-2378. {GaAs HBT decision circuit example}.
[Run91]	Runge et al., K., Silicon Bipolar Integrated Circuits for Multi-Gb/s Optical Com- munication Systems, <i>IEEE Journal on Selected Areas in Communications 9</i> , 5 (June 1991), 640. {Si bipolar decision circuit example}.
[San82]	Sandera, L., Improve Datacomm Links by Using Manchester Code, EDN, February 17, 1982, 155-162. {manchester coding example}.
[Shi87]	Shin et al., D., Selfcorrecting Clock Recovery Circuit with Improved Jitter Per- formance, <i>Electronics Letters 23</i> , 3 (29th January 1987), 110-111. {Improved Hogge detector}.
[SyA86]	Syed, K. E. and A. A. Abidi, Gigahertz Voltage Controlled Oscillator, <i>Electronics Letters</i> 22 (June 5, 1986), 677-679. {MOS tunable monolithic ring oscillator example}.
[TrV89]	Trischitta, P. R. and E. L. Varma, <i>Jitter in digital transmission systems</i> , Artech House, Inc., 1989. {good overview of jitter (textbook) ISBN 0-89006-248-X}.
[Wal89]	Walker, R. C., Fully Integrated High Speed Voltage Controlled Ring Oscillator, <i>U.S. Patent</i> 4,884,041, Granted Nov. 28, 1989. {Si bipolar tunable monolithic ring oscillator example}.

- [WHY91] Walker, R. C., T. Hornak, C. Yen, J. Doernberg and K. H. Springer, A 1.5Gb/s Link Interface Chipset for Computer Data Transmission, *IEEE Journal on Selected Areas in Communications 9*, 5 (June 1991), 698-703. {binary quantized phase detector with master transition}.
- [WWS92] Walker, R., J. Wu, C. Stout, B. Lai, C. Yen, T. Hornak and P. Petruno, A 2-Chip 1.5Gb/s Bus-Oriented Serial Link Interface, *ISSCC Digest of Technical Papers* 35 (February 19-21 1992), 226,227,291. {MT Code, Ring Osc} binary quantized phase detector with master transition}.
- [WSY97] Walker, R., C. Stout and C. Yen, A 2.488Gb/s Si-Bipolar Cloc k and Data Recovery IC with Robust Loss of Signal Detection, *ISSCC Digest of Technical Papers* 40 (February 6-8 1997), 246,247,466. {training loop, loss of signal detection, bbloop, ring oscillator}.
- [WHK98] Walker, R. C., K. Hsieh, T. A. Knotts and C. Yen, A 10Gb/s Si-Bipolar TX/RX Chipset for Computer Data Transmission, *ISSCC Digest of Technical Papers 41* (February 5-7 1998), 302,303,450. {multi-phase architecture, 8-phase VCO, ftdoubler amplifier, bb-loop}.
- [WKG94] Weigandt, T. C., B. Kim and P. R. Gray, Analysis of Timing Jitter in CMOS Ring Oscillators, *ISCAS proceedings, May 30 - June 2, 1994.* {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
- [WiF83] Widmar, A. X. and P. A. Franaszek, A DC Balanced, partitioned-Block 8B/10B Transmission Code, *IBM Journal of Research and Development 27*, 5 (September 1983), 440-451. {8b/10b encoding example - Precursor to Fiber Channel's 8B/10B code}.
- [Wu92] Wu, J. and R. C. Walker, A Bipolar 1.5Gb/s Monolithic Phase Locked Loop for Clock and Data Extraction, *VLSI Circuit Symposium*, Seattle, June 3-5, 1992. {positive feedback PLL loop filter}.
- [YTY80] Yamada, J., J. Temmyo, S. Yoshikawa and T. Kimura, 1.6 Gbit/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters*, 1980, 57-58. {basic SAW system, with discussion of power penalty for SAW phase shifts}.
- [Yam80] Yamada et al., J., 1.6Gb/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters 16*, 2 (17th January 1980), 57-58. {clock extraction by SAW}.
- [YFW82] Yen, C., Z. Fazarinc and R. Wheeler, Time-domain skin-effect model for transient analysis of lossy transmission lines., *Proceedings of the IEEE 70*, 7 (July 1982), 750-757. {skin-effect lossy transmission line transient simulation modelling}.
- [YKI84] Yoshikai, N., K. Katagiri and T. Ito, mB1C Code and its Performance in an Optical Communication System, *IEEE Transactions on Communications COM-32*, 2 (February 1984). {uses m binary bits + one complementary bit stuffed to break runs}.

RCW 01/15/97, updated 9/18/98

1) Eye Margin

- how much noise can be added to input while maintaining target BER? (voltage margin)
- How far can clock phase alignment be varied while maintaining target BER? phase margin)
- how does the static phase error vary versus frequency, temperature and process variation?
- Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics

- what is the jitter generation? (VCO phase noise, etc.)
- what is the jitter transfer function? (peaking and bandwidth)
- what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency

- how do long runlengths affect system performance?
- is bandwidth sufficient for individual isolated bit pulses?
- are there other problematic data patterns? (resonances)
- does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time

- what is the initial, power-on lock time?
- what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?

- are external capacitors, inductors needed?
- does the CDR need an external reference frequency?
- are laser-trimming or highly precise IC processes required?

6) Input/output impedance

- Is S11/S22 (input/output impedance) maintained across the frequency band?
- are reflections large enough to lead to eye closure and pattern dependency?
- is >15 dB return loss maintained across the band?

7) Power Supply

- does the CDR create power supply noise?
- how sensitive is the CDR to supply noise?
- Is the VCO self-modulated through its own supply noise? (can be "deadly")
- what is the total static power dissipation?
- what is the die temperature under worse case conditions?

- can false lock occur with particular data patterns?
- are false lock conditions be detected and eliminated?
- does the phase detector have VCO frequency leakage that can cause injection locking?
- can the VCO run faster than the phase/frequency detector can operate? (another "killer")
- have all latchup/deadly embrace conditions been considered and eliminated?

[Ale75]	Alexander, J. D. H., Clock Recovery from Random Binary Signals, <i>Electronics</i> <i>Letters</i> 11, 22 (30th October 1975), 541-542. {binary quantized phase detector}.
[AFD87]	Andrews, G. E., D. C. Farley, S. H. Dravitz, A. W. Schelling, P. C. Davis and L. G. McAfee, A 300Mb/s Clock Recovery and Data Retiming System, <i>ISSCC Digest of Technical Papers</i> , 1987, 188-189. {SAW Filter Clock Recovery with emphasis on phase alignment problem}
[Arm83]	Armitage, C. B., SAW Filter Retiming in the AT&T 432 Mb/s Lightwave Regenerator, <i>Conference Proceedings: AT&T Bell Labs., Holmdel, NJ, USA</i> , September 3-6, 1984, 102-103. {matches tempco of SAW to tempco of electronics.}.
[Baa86]	Baack, C., Optical Wide Band Transmission Systems, <i>CRC Press Inc.</i> , 1986. {example of PLL for clock recovery}.
[Buc92]	Buchwald et al., A., A 6GHz Integrated Phase-Locked Loop using AlGaAs/ GaAs Heterojunction Bipolar Transistors, <i>ISSCC Digest of Technical Papers</i> , 1992, 98,99,253. {Frequency multiplying ring oscillator}.
[Byr63]	Byrne et al., C. J., Systematic Jitter in Chain of Digital Regenerators, <i>The Bell System Technical Journal</i> , November 1963, 2679. {clock extraction by filtering}.
[CCI90]	CCITT, Digital Line systems based on the synchronous digital hierarchy for use on optical fiber cables, <i>CCITT G.958</i> , 1990. {SONET Payload test patterns regenerator scrambling}.
[Car56]	Carter, R. O., Low-Disparity Binary Coding System, <i>Electronics Letters 1</i> , 3 (May, 1956), 67-68. {conditional inversion data encoding disparity}.
[Cho92]	Chona, F. M. R., Draft Standard, SONET inter-office and intra-office line jitter re., <i>T1X1.3</i> , May 11, 1992. {Standards SONET jitter}.
[Con84]	Connor et al., P. O., A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984), 226-227. {GaAs Fet decision circuit example}.
[Cor79]	Cordell et al., R. R., A 50MHz Phase and Frequency Locked Loop, <i>IEEE Jour-</i> <i>nal of Solid State Circuits SC-14</i> , 6 (December 1979), 1003-1009. {quadricorrel- lator phase detector, Tunable LC Oscillator}.
[DR78]	D'Andrea, N. A. and F. Russo, A Binary Quantized Digital Phase Locked Loop: A Graphical Analysis, <i>IEEE Transactions on Communications COM-26</i> , 9 (September 1978), 1355-1364. {Analysis of BB loop}.
[DeV91]	DeVito et al., L., A 52 MHz and 155MHz Clock-Recovery PLL, <i>ISSCC Digest of Technical Papers</i> , February 13-15, 1991, 142, 143, 306. {multivibrator example, Negative resistor chargepump, rotational freq.det.}.
[Den88]	Den Dulk, R. C., Digital Fast Acquisition Method for Phase-Lock Loops, <i>Electronics Letters</i> 24, 17 (18th August 1988), 1079-1080. {2 order of magnitude locking speed-up with fancy slip detector & charge pump}.
[EnA87]	Enam, S. K. and A. A. Abidi, Decision and clock Recovery Circuits for Giga- hertz Optical Fiber Receivers in Silicon NMOS, <i>Journal of Lightwave Technol-</i> <i>ogy LT-5</i> , 3 (March 1987), 367-372. {MOS tunable monolithic ring oscillator example - Some clever circuit ideas for gigabit rates}.
[EnA92]	Enam, S. K. and A. A. Abidi, MOS Decision and Clock Recovery Circuits for Gb/s Optical-Fiber Receivers, <i>ISSCC Digest of Technical Papers</i> , 1992, 96,97,253. {quadratic phase detector} {MOS decision circuit example}.

[FHH84]	Faulkner, D. W., I. Hawker, R. J. Hawkins and A. Stevenson, An Integrated Regenerator for High Speed Optical Fiber Transmission Systems, <i>IEE Confer-</i> <i>ence Proceedings</i> (November 30 - December 1, 1983) 8-13. {uses rectifier/SAW combo}
[FLS63]	Feynman, R., R. B. Leighton and M. Sands, <i>The Feynman Lectures on Physics</i> , Addison-Wesley Publishing Company, 1963. {Short, simple presentation of timestep analysis for planetary motion}
[FMW97]	Fiedler, A., R. Mactaggart, J. Welch and S. Krishnan, A 1.0625Gbps Transceiver with 2x-Oversampling and Transmit Signal Pre-Emphasis, <i>ISSCC Digest of Technical Papers 40</i> (February 6-8 1997), 238,239,464. {transmit pre-emphasis, skin loss equalizer}.
[Gal94]	Galton, I., Higher-order Delta-Sigma Frequency-to-Digital Conversion, <i>Proceedings of IEEE International Symposium on Circuits and Systems</i> (May 30 - June 2, 1994) 441-444 {Delta-Sigma BB loops phase tracking frequency digitalization PLL}.
[Gal95]	Galton, I., Analog-Input Digital Phase-Locked Loops for Precise Frequency and Phase Demodulation, <i>Transactions on Circuits and Systems-II: Analog and Digital Signal Processing</i> 42, 10 (October 1995), 621-630. {good discussion of delta-sigma analysis of BB PLL's}.
[Gar79]	Gardner, F. M., <i>Phaselock Techniques, Second Edition</i> , John Wiley and Sons, Inc., 1979. {example of using exor-gate to generate clock component from NRZ data}
[Gla85]	Glance, B. S., New Phase-Lock Loop Circuit Providing Very Fast Acquistion Time, <i>IEEE Transactions on Microwave Theory and Techniques MTT-33</i> , 9 (Sep- tember 1985), 747-754. {adds non-linear time constant to speed PLL acquisition by 2 orders of mag.}.
[Gri69]	Griffiths, J. M., Binary Code Suitable for Line Transmission, <i>Electronics Letters</i> 5, 4 (February 20, 1969), 79-81, {5b/6b encoding example}.
[GMP78]	Gruber, J., P. Marten, R. Petschacher and P. Russer, Electronic Circuits for High Bit Rate Digital Fiber Optic Communication Systems, <i>IEEE Transactions on</i> <i>Communications COM-26</i> , 7 (July 1978), 1088-1098.
[Gup75]	Gupta, S. C., Phase-Locked Loops, Proceedings of the IEEE 63, 2 (February 1975), 291-306. {Good systematic outline survey of communication-type PLL's}.
[Hau91a]	Hauenschild et al., J., A Silicon Bipolar Decision Circuit Operating up to 15Gb/ s, <i>IEEE Journal of Solid State Circuits 26</i> , No.11 (November 1991), 1734-1736. {Si bipolar decision circuit example}.
[Hau91b]	Hauser, M. W., Principles of Oversampling A/D Conversion, <i>J. Audio Eng. So.</i> <i>Vol 39</i> , 1/2 (Jan/February 1991), 3-26. {excellent tutorial on Delta Sigma AD, Oversampling, noiseshaping}.
[HeS88]	Hein, J. P. and J. W. Scott, z-Domain Model for Discrete-Time PLL's, <i>IEEE Transactions on Circuits and Systems 35</i> , 11 (November 1988), 1393-1400. {good discussion of using z-transforms in PLL analysis}.
[Hog85]	Hogge, Jr., C. R., A Self Correcting Clock Recovery Circuit, <i>IEEE Transactions</i> on <i>Electron Devices ED-32</i> , 12 (December 1985), 2704-2706. {Original Hogge detector, interesting phase detector idea}.

[Hor92]	Hornak, T., Interface Electronics for Fiber Optic Computer Links, <i>Intensive</i> <i>Course on Practical Aspects in Analog IC Design</i> , Lausanne, Switzerland, June 29-July 10, 1992. {Excellent overview of components for serial optical data
[Hu93]	Hu, T. and P. Gray, A Monolithic 480 Mb/s AGC/Decision/Clock Recovery Cir- cuit in 1.2 um CMOS, <i>IEEE Journal of Solid State Circuits</i> 28, 12 (Dec. 1993) 1314-20 (CMOS parallel signal paths multiphase sampling CDR mux)
[Kas85]	Kasper et al., B. L., SAGM Avalanche Photodiode Optical Receiver for 2 Gbit/s and 4 Gbit/s, <i>Electronic Letters 21</i> , 21 (10th October 1985), 982-984. {eye dia- gram}
[KWG94]	Kim, B., T. C. Weigandt and P. R. Gray, PLL/DLL System Noise Analysis for Low Jitter Clock Synthesizer Design, <i>ISCAS proceedings</i> , May 30 - June 2, 1994, 31-34, {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
[Lai90]	Lai, B., Decision Circuit Lowers Transmission Bit Error Rates, <i>Microwaves and RF</i> , July 1990, 118-122. {Si bipolar decision circuit example}.
[LaW91]	Lai, B. and R. C. Walker, A Monolithic 622Mb/s Clock Extraction Data Retim- ing Circuit, <i>ISSCC Digest of Technical Papers 34</i> (February 13-15, 1991), 144.145. {binary quantized phase detector}.
[Lam93]	Lam, V. M. T., Microwave Oscillator Phase Noise Reduction Using Negative Resistance Compensation, <i>Electronics Letters 29</i> , 4 (February 18th, 1993), 379- 340. {Leeson negative resistance phase noise second harmonic IC}
[LiC81]	Lindsey, W. C. and C. M. Chie, A Survey of Digital Phase-Locked Loops, <i>Proceeding of the IEEE 69</i> , 4 (April 1981), 410-431. {Presents a good taxonomy of digital PLLs}
[Mac87]	MacDougall, M. H., <i>Simulating Computer Systems - Techniques and Tools</i> , The MIT Press, Cambridge, Massachusetts, 1987. {description and source code for event driven simulator}
[McG90]	McGaughey, J. T., Convert NRZ format to Biphase, <i>Electronic Design</i> , April 12, 1990. 86 {biphase example}
[OFC84]	O'Connor, P., P. G. Flahive, W. Clemetson, R. L. Panock, S. H. Wemple, S. C. Shunk and D. P. Takahashi, A Monolithic Multigigabit/Second DCFL GaAs Decision Circuit, <i>IEEE Electron Device Letters EDL-5</i> , 7 (July 1984),. {2.4 GHz ED GaAs Mesfet Flip-flop w/input buffer amp}.
[Ofe89]	Ofek, Y., The Conservative Code for Bit Synchronization, <i>IEEE Transactions on Communications</i> , 1989. {conserves transition number uses divider for clock recovery}
[OhT83]	Ohta, N. and T. Takada, High Speed GaAs SCFL Monolithic Integrated Decision Circuit for Gb/s Optical Repeaters, <i>Electronics Letters</i> , September 1983. {GaAs
[Par89]	Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, <i>Electronic Letters 25</i> (January 1989), 83-84. {clock extraction by filtering}.
[Pet88]	Petrovic, R., Low Redundancy Optical Fiber Line Code, <i>Journal of Optical Communication 9</i> , 3 (1988), 108-111. {13B/14B code design}.
[RaO91]	Ransijn, H. and P. O'Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, <i>JSSC 26</i> , 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

[Raz96a]	B. Razavi, ed., <i>Monolithic phase-locked loops and clock recovery circuits: the-</i> <i>ory and design</i> , IEEE Press, 1996. {A volume of selected reprints with bibliogra-
[Raz96b]	phy}. Razavi, B., Monolithic Phase-Locked Loops, <i>ISSCC Tutorial</i> , San Francisco,
[ReG73]	CA, February 7, 1996. {Good overview of non-data-driven PLL theory}. Reddy, C. P. and S. C. Gupta, A Class of All-Digital Phase Locked Loops: Modeling and Analysis, <i>IEEE Transactions on industrial Electronics and Control</i> <i>Instrumentation IECL</i> 20, 4 (November 1973), 239-251. {discusses of binary-
[D CE8/1]	quantized phase detection }.
[KCI 0+]	Transversal Filters in the Regenerators of Undersea Long-Haul Fiber Transmission Systems, <i>Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {discusses jitter accumulation}.
[Ros84]	Rosenberg et al., R. L., Timing Recovery with SAW Transversal filters in the Regenerators of Undersea Long-haul Fiber Transmission Systems, <i>IEEE Journal of Lightwave Technology LT-2</i> , 6 (December 1984), 917-925. {clock extraction by SAW}.
[Ros85]	Ross, F. E., An Overview of FDDI: the Fiber Distributed Data Interface, <i>IEEE Journal on Selected Areas in Communications</i> 7, 7 (September 1985), 1046, Table 1, {4b/5b encoding example, example of frame synch characters}.
[RHF90]	Ross, F. E., J. R. Hamstra and R. L. Fink, FDDI - A LAN among MANs, <i>ACM Computer Communications Review</i> , July 1990, 16-31. {4b/5b encoding example}
[Rou76]	Rousseau, M., Block Codes for Optical-Fibre Communication, <i>Electronics Let</i> - ters 12, 18 (2nd September 1976), 478-479. {mBnB code discussion, run length
[RoM77]	Roza, E. and P. W. Millenaar, An Experimental 560 MBit/s Repeater with Inte- grated Circuits, <i>IEEE Transactions on Communications COM-25</i> , 9 (September 1977) {coax-based, good comparison of PLL, vs filter-type clock extraction}.
[RuG91]	Runge, K. and J. L. Gimlett, 20Gb/s AlGaAs HBT Decision Circuit IC, <i>Electronics Letters</i> 27, 25 (5th December 1991), 2376-2378. {GaAs HBT decision circuit example}.
[Run91]	Runge et al., K., Silicon Bipolar Integrated Circuits for Multi-Gb/s Optical Com- munication Systems, <i>IEEE Journal on Selected Areas in Communications 9</i> , 5 (June 1991), 640. {Si bipolar decision circuit example}.
[San82]	Sandera, L., Improve Datacomm Links by Using Manchester Code, EDN, February 17, 1982, 155-162. {manchester coding example}.
[Shi87]	Shin et al., D., Selfcorrecting Clock Recovery Circuit with Improved Jitter Per- formance, <i>Electronics Letters 23</i> , 3 (29th January 1987), 110-111. {Improved Hogge detector}.
[SyA86]	Syed, K. E. and A. A. Abidi, Gigahertz Voltage Controlled Oscillator, <i>Electronics Letters</i> 22 (June 5, 1986), 677-679. {MOS tunable monolithic ring oscillator example}.
[TrV89]	Trischitta, P. R. and E. L. Varma, <i>Jitter in digital transmission systems</i> , Artech House, Inc., 1989. {good overview of jitter (textbook) ISBN 0-89006-248-X}.
[Wal89]	Walker, R. C., Fully Integrated High Speed Voltage Controlled Ring Oscillator, <i>U.S. Patent</i> 4,884,041, Granted Nov. 28, 1989. {Si bipolar tunable monolithic ring oscillator example}.

- [WHY91] Walker, R. C., T. Hornak, C. Yen, J. Doernberg and K. H. Springer, A 1.5Gb/s Link Interface Chipset for Computer Data Transmission, *IEEE Journal on Selected Areas in Communications 9*, 5 (June 1991), 698-703. {binary quantized phase detector with master transition}.
- [WWS92] Walker, R., J. Wu, C. Stout, B. Lai, C. Yen, T. Hornak and P. Petruno, A 2-Chip 1.5Gb/s Bus-Oriented Serial Link Interface, *ISSCC Digest of Technical Papers* 35 (February 19-21 1992), 226,227,291. {MT Code, Ring Osc} binary quantized phase detector with master transition}.
- [WSY97] Walker, R., C. Stout and C. Yen, A 2.488Gb/s Si-Bipolar Cloc k and Data Recovery IC with Robust Loss of Signal Detection, *ISSCC Digest of Technical Papers* 40 (February 6-8 1997), 246,247,466. {training loop, loss of signal detection, bbloop, ring oscillator}.
- [WHK98] Walker, R. C., K. Hsieh, T. A. Knotts and C. Yen, A 10Gb/s Si-Bipolar TX/RX Chipset for Computer Data Transmission, *ISSCC Digest of Technical Papers 41* (February 5-7 1998), 302,303,450. {multi-phase architecture, 8-phase VCO, ftdoubler amplifier, bb-loop}.
- [WKG94] Weigandt, T. C., B. Kim and P. R. Gray, Analysis of Timing Jitter in CMOS Ring Oscillators, *ISCAS proceedings, May 30 - June 2, 1994.* {Excellent and Intuitive discussion of Jitter in Ring Oscillators}.
- [WiF83] Widmar, A. X. and P. A. Franaszek, A DC Balanced, partitioned-Block 8B/10B Transmission Code, *IBM Journal of Research and Development 27*, 5 (September 1983), 440-451. {8b/10b encoding example - Precursor to Fiber Channel's 8B/10B code}.
- [Wu92] Wu, J. and R. C. Walker, A Bipolar 1.5Gb/s Monolithic Phase Locked Loop for Clock and Data Extraction, *VLSI Circuit Symposium*, Seattle, June 3-5, 1992. {positive feedback PLL loop filter}.
- [YTY80] Yamada, J., J. Temmyo, S. Yoshikawa and T. Kimura, 1.6 Gbit/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters*, 1980, 57-58. {basic SAW system, with discussion of power penalty for SAW phase shifts}.
- [Yam80] Yamada et al., J., 1.6Gb/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit, *Electronics Letters 16*, 2 (17th January 1980), 57-58. {clock extraction by SAW}.
- [YFW82] Yen, C., Z. Fazarinc and R. Wheeler, Time-domain skin-effect model for transient analysis of lossy transmission lines., *Proceedings of the IEEE 70*, 7 (July 1982), 750-757. {skin-effect lossy transmission line transient simulation modelling}.
- [YKI84] Yoshikai, N., K. Katagiri and T. Ito, mB1C Code and its Performance in an Optical Communication System, *IEEE Transactions on Communications COM-32*, 2 (February 1984). {uses m binary bits + one complementary bit stuffed to break runs}.